CPU Instruction Set Details

This appendix provides a detailed description of the operation of each
R4000 instruction in both 32- and 64-bit modes. The instructions are listed
in alphabetical order.

Exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate cause and manner of handling exceptions are omitted from the
instruction descriptions in this appendix.

Figures at the end of this appendix list the bit encoding for the constant
fields of each instruction, and the bit encoding for each individual
instruction is included with that instruction.

MIPS R4000 Microprocessor User's Manual A-1

Appendix A

A.l Instruction Classes

CPU instructions are divided into the following classes:

Load and Store instructions move data between memory and
general registers. They are all I-type instructions, since the
only addressing mode supported is base register + 16-bit
immediate offset.

Computational instructions perform arithmetic, logical and
shift operations on values in registers. They occur in both
R-type (both operands are registers) and I-type (one operand is
a 16-bit immediate) formats.

Jump and Branch instructions change the control flow of a
program. Jumps are always made to absolute 26-bit word
addresses (J-type format), or register addresses (R-type), for
returns and dispatches. Branches have 16-bit offsets relative to
the program counter (I-type). Jump and Link instructions save
their return address in register 31.

Coprocessor instructions perform operations in the
coprocessors. Coprocessor loads and stores are I-type.
Coprocessor computational instructions have coprocessor-
dependent formats (see the FPU instructions in Appendix B).
Coprocessor zero (CP0) instructions manipulate the memory
management and exception handling facilities of the processor.

Special instructions perform a variety of tasks, including
movement of data between special and general registers, trap,
and breakpoint. They are always R-type.

A-2

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

A.2 Instruction Formats

Every CPU instruction consists of a single word (32 bits) aligned on aword
boundary and the major instruction formats are shown in Figure A-1.

[-Type (Immediate)
31 26 25 21 20 16 15 0
op rs rt immediate

J-Type (Jump)
31 26 25 0
op target

R-Type (Register)

31 2625 21 20 16 15 1110 65 0
op rs rt rd | shamt |funct
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) or branch condition

16-bit immediate, branch displacement or address

immediate displacement

target 26-bit jump target address

rd 5-bit destination register specifier
shamt 5-bit shift amount

funct 6-bit function field

Figure A-1 CPU Instruction Formats

MIPS R4000 Microprocessor User's Manual A-3

Appendix A

A.3 Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such as rs,
rt, immediate, etc.) are shown in lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at
the end of this Appendix, and the bit encoding also accompanies each
instruction.

In the instruction descriptions that follow, the Operation section describes
the operation performed by each instruction using a high-level language
notation. The R4000 can operate as either a 32- or 64-bit microprocessor
and the operation for both modes is included with the instruction
description.

Special symbols used in the notation are described in Table A-1.

A-4

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Table A-1 CPU Instruction Operation Notations

Symbol Meaning
- Assignment.
Il Bit string concatenation.
xY Replication of bit value xinto a y-bit string. Note: x is always a single-bit value.
X.. Selection of bits y through z of bit string x. Little-endian bit notation is always
vz used. If yis less than z, this expression is an empty (zero length) bit string.
+ 2's complement or floating-point addition.
- 2's complement or floating-point subtraction.
. 2's complement or floating-point multiplication.
div 2's complement integer division.
mod 2's complement modulo.
/ Floating-point division.
< 2’s complement less than comparison.
and Bit-wise logical AND.
or Bit-wise logical OR.
xor Bit-wise logical XOR.
nor Bit-wise logical NOR.

GPR[A] General-Register x. The content of GPR[0] is always zero. Attempts to alter
the content of GPR[0] have no effect.

CPR[z,X] Coprocessor unit z, general register x.

CCR[z,X] Coprocessor unit z, control register x.

COC[Z7] Coprocessor unit z condition signal.

BigEndianMem | Big-endian mode as configured atreset (0 — Little, 1 — Big). Specifies the en-
dianness of the memory interface (see LoadMemory and StoreMemory), and
the endianness of Kernel and Supervisor mode execution.

ReverseEndian | Signal to reverse the endianness of load and store instructions. This feature is
available in User mode only, and is effected by setting the RE bit of the Status
register. Thus, ReverseEndian may be computed as (SRy5 and User mode).

BigendianCPU | The endianness for load and store instructions (0 — Little, 1 — Big). In User
mode, this endianness may be reversed by setting SR,5. Thus, BigendianCPU
may be computed as BigEndianMem XOR ReverseEndian.

LLbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET
and /nvalidate and read by SC.

T+i Indicates the time steps between operations. Each of the statements within a
time step are defined to be executed in sequential order (as modified by con-
ditional and loop constructs). Operations which are marked T+i: are executed
at instruction cycle j relative to the start of execution of the instruction. Thus,
an instruction which starts at time j executes operations marked T+i: at time
i + j. The interpretation of the order of execution between two instructions or
two operations which execute at the same time should be pessimistic; the or-
der is not defined.

MIPS R4000 Microprocessor User's Manual A-5

Appendix A

Instruction Notation Examples

The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:

GPR[f] ~ immediate || 06

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General-Purpose Register rt.

Example #2:

(immediate;5)!° || immediate;s o

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

A-6 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

A.4 Load and Store Instructions

In the R4000 implementation, the instruction immediately following a
load may use the loaded contents of the register. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

Two special instructions are provided in the R4000 implementation of the
MIPS ISA, Load Linked and Store Conditional. These instructions are
used in carefully coded sequences to provide one of several
synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencers/event counts.

In the load and store descriptions, the functions listed in Table A-2 are
used to summarize the handling of virtual addresses and physical

memory.

Table A-2 Load and Store Common Functions

Function

Meaning

AddressTranslation

Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present in the TLB.

LoadMemory

Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory

Uses the cache, write buffer, and main memory to store the
word or part of word specified as data in the word
containing the specified physical address. The low-order
two bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

MIPS R4000 Microprocessor User's Manual A-7

Appendix A

As shown in Table A-3, the Access Type field indicates the size of the data
item to be loaded or stored. Regardless of access type or byte-numbering
order (endianness), the address specifies the byte which has the smallest
byte address in the addressed field. For a big-endian machine, this is the
leftmost byte and contains the sign for a 2’s complement number; for a
little-endian machine, this is the rightmost byte.

Table A-3 Access Type Specifications for Loads/Stores

Access Type Mnemonic Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

The bytes within the addressed doubleword which are used can be
determined directly from the access type and the three low-order bits of

the address.

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

A.5 Jump and Branch Instructions

All jump and branch instructions have an architectural delay of exactly
one instruction. That is, the instruction immediately following a jump or
branch (that is, occupying the delay slot) is always executed while the
target instruction is being fetched from storage. A delay slot may not itself
be occupied by a jump or branch instruction; however, this error is not
detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction
during a delay slot, the hardware sets the EPC register to point at the jump
or branch instruction that precedes it. When the code is restarted, both the
jump or branch instructions and the instruction in the delay slot are
reexecuted.

Because jump and branch instructions may be restarted after exceptions or
interrupts, they must be restartable. Therefore, when a jump or branch
instruction stores a return link value, register 31 (the register in which the
link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and
Link Register instruction must use a register whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

MIPS R4000 Microprocessor User's Manual A-9

Appendix A

A.6 Coprocessor Instructions

Coprocessors are alternate execution units, which have register files
separate from the CPU. The MIPS architecture provides four coprocessor
units, or classes, and these coprocessors have two register spaces, each
space containing thirty-two 32-bit registers.

= The first space, coprocessor general registers, may be directly
loaded from memory and stored into memory, and their
contents may be transferred between the coprocessor and
processor.

= The second space, coprocessor control registers, may only have
their contents transferred directly between the coprocessor and
the processor. Coprocessor instructions may alter registers in
either space.

A.7 System Control Coprocessor (CP0) Instructions

There are some special limitations imposed on operations involving CPO
that is incorporated within the CPU. Although load and store instructions
to transfer data to/from coprocessors and to move control to/from
coprocessor instructions are generally permitted by the MIPS architecture,
CPO is given a somewhat protected status since it has responsibility for
exception handling and memory management. Therefore, the move to/
from coprocessor instructions are the only valid mechanism for writing to
and reading from the CPO registers.

Several CPO0 instructions are defined to directly read, write, and probe TLB
entries and to modify the operating modes in preparation for returning to
User mode or interrupt-enabled states.

A-10 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

ADD Add ADD
31 26 25 21 20 16 15 11 10 6 0
SPECIAL rs rt rd 0 ADD
0000O0O0 00000 100000
6 5 5 5 5 6
Format:
ADD rd,rs, rt
Description:

Operat

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.
In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2's
complement overflow). The destination register rd is not modified when

an integer overflow exception occurs.

ion:

32 T

64 T:

GPR[rd] —GPR]rs] + GPR[r]

temp « GPR[rs] + GPR]rt]
GPRIrd] - (tempz;)®? || tempz; g

Exceptions:

Integer overflow exception

MIPS R4000 Microprocessor User's Manual

A-11

Appendix A

ADDI

Add Immediate

ADDI

31 26 25 21 20 16 15 0
ADDI s rt immediate
001000
6 5 5 16
Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s
complement overflow). The destination register rt is not modified when
an integer overflow exception occurs.

Operation:

32 T:

64 T:

GPR [rt] — GPR[rs] +(immediate;5)*® | | immediate;s o

temp — GPR][rs] + (immediate;5)*® | | immediate;s ,

GPRIr] (temps;)®? || tempay g

Exceptions:

Integer overflow exception

A-12

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

ADDIU

Add Immediate Unsigned

ADDIU

31 26 25 21 20 16 15 0
ADDIU rs rt immediate
001001
6 5 5 16
Format:
ADDIU rt, rs, immediate
Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
No integer overflow exception occurs under any circumstances. In 64-bit

mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is
that ADDIU never causes an overflow exception.

Operation:
32 T: GPR[r] — GPR][rs] + (immediate;5)'® || immediate;s o
64 T: temp « GPR|rs]+ (immediate15)48 | | immediate s g
GPRIrt] (temp31)** || tempa; o
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-13

Appendix A

ADDU

Add Unsigned

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 ADDU
000000 00000 100001
6 5 5 5 5 6
Format:
ADDU rd, rs, rt
Description:
The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances. In 64-bit mode,
the operands must be valid sign-extended, 32-bit values.
The only difference between this instruction and the ADD instruction is
that ADDU never causes an overflow exception.
Operation:
32 T: GPR[rd] - GPR[rs] + GPR]rt]
64 T:. temp — GPRJrs] + GPRJrt]
GPRIrd] (temps1)* || tempas o
Exceptions:
None
A-14 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

AND And AND

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 AND
(ONONONONON0) 00000 100100
6 5 5 5 5 6
Format:
AND rd, rs, rt
Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical AND operation. The resultis placed
into general register rd.

Operation:

32 T: GPR[rd] -« GPR[rs] and GPR]rt]

64 T. GPR[rd] — GPR[rs] and GPR[r]

Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-15

Appendix A

ANDI And Immediate AND

31 26 25 21 20 16 15 0
ANDI rs rt immediate
001100
6 5 5 16
Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical AND operation. The resultis placed
into general register rt.

Operation:

32 T: GPRIr] — 0| (immediate and GPRIrs];s. o)

64 T. GPR[rt] — 0%|| (immediate and GPR[rs];5_ o)

Exceptions:
None

A-16 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BCzF Branch On Coprocessor z False BCz

31 26 25 21 20 16 15 0
COPz BC BCF offset
0100xx* 01000 00000
6 5 5 16
Format:
BCzF offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If coprocessor z’s condition signal (CpCond), as sampled
during the previous instruction, is false, then the program branches to the
target address with a delay of one instruction.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition — not COC[z]
T: target — (offset;s)** || offset || 02
T+1: if condition then
PC ~ PC + target

endif

64 T-1: condition — not COC[z]
T: target — (offset;s)*® || offset || 02
T+1: if condition then
PC — PC + target
endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-17

Appendix A

BCZ I: Branch On Coprocessor z False BCZF

(continued)

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCZF Bit# 3130 29 28 27 26 2524 2322 21201918 17 16 0

Bcor|9(1/0{0/0|0|0|1/0/0 |0|0|0|0|O0|O

Bit# 3130 29 28 27 26 2524 2322 2120 1918 17 16 0
o/1/ojo|o|1|o|1|0/0|0|0|0|0O]|O|O

BC1F
Bit# 3130 29 28 27 26 2524 2322 2120 19 18 17 16 0
scop| 0] 1/ 0|0 |1]0fo|1|0fo|0j0|0|0|0]|O

o d N e
pcode BC sub-opcode Branch condition
Coprocessor Unit Number

A-18 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BCzFL

Branch On Coprocessor z

BCzFL

False Likely
31 26 25 21 20 16 15 0
COPz BC BCFL offset
0100xx* 01000 00010
6 5 5 16
Format:

BCzFL offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of coprocessor z’s condition line, as
sampled during the previous instruction, is false, the target address is

branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay

slot is nullified.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual

A-19

Appendix A

BCzFL

Branch On Coprocessor z
False Likely
(continued)

Operation:

BCzFL

32
T.

64

T+1:

T-1: condition — not COCJz]

target — (offset;5)'# || offset || 02
if condition then

PC ~ PC + target
else

endif

NullifyCurrentinstruction

: condition — not COC[z]

target — (offset;5)*® || offset || 02
if condition then
PC ~ PC + target

NullifyCurrentinstruction

else

endif

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzFL Bit# 31302928 27 26 2524 2322 21201918 17 16

BCOFL

0

1,0/0|0|0|O0O}|1|0|0]|0O]|O

0

0j1|0

Bit# 31

30 29 28 27 26 25 24 23 22

21 2019 18

17 16

BC1FL

0

1/0(0|0|1]0

1/0/0 |00

0

010

Bit# 3130 29 28 27 26 25

24 23 22

21201918 17 16

BC2FL

0

1/0/{0|1]0|0O|1|0|0 0|0

0

0/1|0

A

_J

Opcode s

e

Coprocessor Unit Number ——

BC sub-opcode Branch condition

A-20

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BCzT Branch On Coprocessor z True BCzT

31 26 25 21 20 16 15 0
COPz BC BCT offset
0100xx* 01000 00001
6 5 5 16
Format:
BCzT offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the coprocessor z’s condition signal (CpCond) is true,
then the program branches to the target address, with a delay of one
instruction.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition — COCJz]
T: target — (offsetys) || offset || 02
T+1: if condition then
PC «~ PC + target
endif
64 T-1: condition — COCJz]
T: target — (offset;s)*® || offset || 02
T+1: if condition then
PC — PC + target
endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-21

Appendix A

BCZT Branch On Coprocessor z True BCZT

(continued)

Exceptions:

Coprocessor unusable exception
Opcode Bit Encoding:

BCZT Bit# 3130 29 28 27 26 2524 2322 21201918 17 16 0
0/1/0/0/0|0|0O|1|0|0O|0O|0O|0O|0O|O|1

BCOT
Bit# 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0
1/0/0|0|1|0|1|0|0O|0O|0O|0O|O0O]O|12

BciT| ©
Bit# 3130 29 28 27 26 25 24 2322 21201918 17 16 0

1/0/{0|12]0|0|2|0|0O|0|0O|0O|0O]|O0]|12
N _/

Opcode BC sub-opcode Branch condition
Coprocessor Unit Number

Bc2T| ©

A-22 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BCZTL Branch On Coprocessor z BCZTL

True Likely
31 26 25 21 20 16 15 0
COPz BC BCTL offset
0100xx* 01000 00011
6 5 5 16
Format:
BCzTL offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of coprocessor z’s condition line, as
sampled during the previous instruction, is true, the target address is
branched to with a delay of one instruction.
If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.
Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.
Operation:

32 T-1: condition —~ COCJZ]
T: target — (offset;s)* || offset || 02
T+1: if condition then

64 T-1:. condition - COCJZ]
T: target — (offset;5)*9|| offset || 02
T+1: if condition then

PC ~ PC + target
NullifyCurrentinstruction

else

endif

PC « PC + target
NullifyCurrentinstruction

else

endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-23

Appendix A

BCZTL Branch ?_pugtl)_ﬁ)lzgﬁ/essor z BCZTL

(continued)

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzTL Bit# 3130 29 28 27 26 25 24 23 22 2120 19 18 17 16 0
BcoTL| 0| 1| 0/0|0|00|1|0/0|0|0[0|0|1|1
Bit# 3130 29 28 27 26 2524 2322 21 20 1918 17 16 0
sc1TL| 0| 1/ 0/0|0|1/0|1|0l0|0|0[0|0O|1|1
Bit# 3130 29 28 27 26 2524 2322 21201918 17 16 0
scoTL| 0] 1|00 |1{0 0|1 0/0|0|0|0|0O|1]1

H—/Hf/\ N /
N e
Opcode BC sub-opcode Branch condition
Coprocessor Unit Number

A-24 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BEQ

Branch On Equal

BEQ

31 26 25 21 20 16 15
BEQ rs rt offset
000100
6 5 5 16
Format:

BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of

general register rt are compared. If the two registers are equal, then the
program branches to the target address, with a delay of one instruction.

Operation:
32 T: target — (offset;5)'*|| offset || 02
condition — (GPR[rs] = GPR]rt])
T+1: if condition then
PC ~ PC + target
endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR[rs] = GPR]rt])
T+1: if condition then
PC — PC + target
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-25

Appendix A

BEQL Branch On Equal Likely BEQL

31 26 25 21 20 16 15 0
BEQL rs rt offset
010100
6 5 5 16
Format:

BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, the target
address is branched to, with a delay of one instruction. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target — (offset;5)'* || offset || 02
condition —~ (GPR][rs] = GPR]rt])
T+1: if condition then
PC — PC + target

NullifyCurrentinstruction

else

endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR][rs] = GPRJrt])
T+1: if condition then

PC — PC + target
else

NullifyCurrentinstruction
endif

Exceptions:

None

A-26 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BGEZ

Branch On Greater Than
Or Equal To Zero

BGEZ

31 26 25 21 20 16 15 0
REGIMM rs BGEZ offset
000001 00001
6 5 5 16

Format:
BGEZ rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction.

Operation:

32 T: target — (offset;c)'* || offset || 02

condition — (GPR][rs]z; = 0)

T+1: if condition then

64 T:

PC « PC + target
endif
target — (offset;5)*® || offset || 02
condition — (GPR[rs]g3z = 0)

T+1: if condition then

PC ~ PC + target
endif

Exceptions:

None

MIPS R4000 Microprocessor User's Manual

A-27

Appendix A

BGEZAL

Branch On Greater Than
Or Equal To Zero And Link

BGEZAL

31 26 25 21 20 16 15 0
REGIMM rs BGEZAL offset
000001 10001
6 5 5 16
Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the

target address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction is not
trapped, however.

Operation:

32 T

64 T:

T+1:

T+1:

target — (offset;5)*|| offset || 02
condition —~ (GPR]rs]3; = 0)
GPR[31] - PC+8
if condition then

PC ~ PC + target
endif
target — (offset;5)*® || offset || 02
condition — (GPR]rs]g3 = 0)
GPR[31] - PC+8
if condition then

PC — PC + target
endif

Exceptions:

None

A-28

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Branch On Greater Than

BG EZAL Or Equal To Zero

And Link Likely

BGEZALL

31 26 25 21 20 16 15 0
REGIMM rs BGEZALL offset
000001 10011
6 5 16
Format:

BGEZALL rs, offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction. General register rs may not
be general register 31, because such an instruction is not restartable. An
attempt to execute this instruction is not trapped, however. If the
conditional branch is not taken, the instruction in the branch delay slot is

nullified.
Operation:
32 T: target — (offset;5)'* || offset || 02
condition — (GPR][rs]3; =0)
GPR[31] -« PC +8
T+1: if condition then
PC ~ PC +target
else . .
NullifyCurrentinstruction
endif
64 T: target — (offset;s)*® || offset || 02
condition — (GPR][rs]gz = 0)
GPR[31] - PC +8
T+1: if condition then
PC ~ PC + target
else : .
NullifyCurrentinstruction
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-29

Appendix A

BGEZL

Branch On Greater
Than Or Equal To Zero Likely

BGEZL

31 26 25 21 20 16 15 0
REGIMM rs BGEZL offset
000001 00011
6 5 5 16
Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction. If the conditional branch is not taken, the instruction in
the branch delay slot is nullified.

Operation:

32 T

64 T

T+1:

T+1:

target — (offset;5)* || offset || 02
condition —~ (GPR]rs]z; = 0)
if condition then

PC ~ PC + target
else

NullifyCurrentinstruction
endif

target — (offset;s)*® || offset || 02
condition — (GPR][rs]g3 = 0)
if condition then
PC ~ PC + target
else

NullifyCurrentinstruction
endif

Exceptions:

None

A-30

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BGTZ

Branch On Greater Than Zero

BGTZ

31 26 25 21 20 16 15 0
BGTz rs 0 offset
000111 00000
6 5 5 16
Format:
BGTZ rs, offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit cleared and are not
equal to zero, then the program branches to the target address, with a
delay of one instruction.
Operation:
32 T: target — (offset;5)'*|| offset || 02
condition — (GPR[rs]3; = 0) and (GPR(rs] # 0%2)
T+1: if condition then
PC ~ PC + target
endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR]rs]g3 = 0) and (GPR[rs] # 0%%)
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-31

Appendix A

BGTZL

Branch On Greater
Than Zero Likely

BGTZL

31 26 25 21 20 16 15 0
BGTZL rs 0 offset
010111 00000
6 5 5 16
Format:
BGTZL rs, offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit cleared and are not
equal to zero, then the program branches to the target address, with a
delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.
Operation:
32 T: target — (offset;g)'* || offset || 02
condition — (GPR[rs]3; = 0) and (GPR[rs] # 0%?)
T+1: if condition then
PC —~ PC + target
else
NullifyCurrentinstruction
endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR[rs]g3 = 0) and (GPR[rs] # 054
T+1: if condition then
PC — PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
A-32 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BLEZ

Branch on Less Than
Or Equal To Zero

BLEZ

31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000
6 5 5 16
Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one

instruction.

Operation:

32 T

64 T

T+1:

T+1:

target — (offset;s)1* || offset || 02

condition — (GPR[rs]3; = 1) or (GPR(rs] = 0%?)

if condition then
PC — PC + target

endif

target — (offset;5)*® || offset || 02

condition — (GPR[rs]gz = 1) or (GPR]rs] = 0%

if condition then
PC —~ PC + target

endif

Exceptions:

None

MIPS R4000 Microprocessor User's Manual

A-33

Appendix A

BLEZL

Branch on Less Than
Or Equal To Zero Likely

BLEZL

31 26 25 21 20 16 15 0
BLEZL rs 0 offset
010110 00000
6 5 5 16
Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs is compared to zero. If
the contents of general register rs have the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Operation:

32 T

64 T:

T+1:

T+1:

target — (offset15)14 || offset || 02
condition — (GPR]rs]z; = 1) or (GPR]rs] = 032)
if condition then
PC — PC + target
else
NullifyCurrentinstruction
endif
target (offset;5)*® || offset || 02
condition — (GPR[rs]gz = 1) or (GPR]rs] = 064
if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

A-34

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BLTZ

Branch On Less Than Zero

BLTZ

31 26 25 21 20 16 15 0
REGIMM rs BLTZ offset
000001 00000
6 5 5 16
Format:

BLTZ rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit set,
then the program branches to the target address, with a delay of one

target — (offset;5)** || offset || 02

condition — (GPR]rs]z; = 1)

if condition then
PC ~ PC +target

target — (offset;5)*® || offset || 02

condition —~ (GPR][rs]gz = 1)

if condition then
PC —~ PC + target

instruction.
Operation:
32 T
T+1:
endif
64 T
T+1:
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-35

Appendix A

BLTZA

Branch On Less

- Than Zero And Link B LTZAL
31 26 25 21 20 16 15 0
REGIMM rs BLTZAL offset
000001 10000
6 5 5 16
Format:
BLTZAL rs, offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.
General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however.
Operation:
32 T: target — (offset;s)'* || offset || 0
condition — (GPR[rs]z; = 1)
GPR[31] - PC+8
T+1: if condition then
PC ~ PC + target
endif
64 T: target — (offset;s)*® || offset || 02
condition — (GPR][rs]lgz3=1)
GPR[31] -« PC+8
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None
A-36 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BLTZA

Branch On Less
LL Than Zero And Link Likely

BLTZALL

31 26 25 21 20 16 15 0
REGIMM rs BLTZALL offset
000001 10010
6 5 5 16
Format:

BLTZALL rs, offset

Descripti

on:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general

register rs have the sign bit set, then the program branches to the target

address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:
32 T: target — (offset;s)'* || offset || 02
condition — (GPR][rs]z; = 1)
GPR[31] -« PC+8
T+1: if condition then
PC — PC + target
else . .
NullifyCurrentinstruction
endif
64 T: target — (offset;5)*® || offset || 02
condition —~ (GPR][rs]gz = 1)
GPR[31] -« PC +8
T+1: if condition then
PC ~ PC + target
else . :
NullifyCurrentinstruction
endif
Exceptions:
None

MIPS R4000 Micropro

cessor User's Manual

A-37

Appendix A

B LTZ L Branch On Less Than Zero Likely B LTZ L

31 26 25 21 20 16 15 0
REGIMM rs BLTZL offset
000001 00010
6 5 5 16
Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit set,
then the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

Operation:

32 T: target — (offset;5)'*|| offset || 02
condition — (GPR([rs]3; = 1)
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
64 T: target — (offset;s)* || offset || 02
condition — (GPR[rslgz = 1)
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

A-38 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

B N E Branch On Not Equal B N E
31 26 25 21 20 16 15 0
BNE rs rt offset
000101
6 5 5 16
Format:
BNE rs, rt, offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.
Operation:
32 T: target — (offset;5)'*|| offset || 02

T+1: if condition then

condition — (GPR[rs] # GPR]rt])

PC — PC + target
endif

64 T: target — (offset;s)*® || offset || 02
condition — (GPR[rs] # GPR]rt])
T+1: if condition then
PC — PC + target
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-39

Appendix A

BNEL Branch On Not Equal Likely BNEL
31 26 25 21 20 16 15 0
BNEL rs rt offset
010101
6 5 5 16
Format:

BNEL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one

instruction.

If the conditional branch is not taken, the instruction in the branch delay

slot is nullified.

Operation:

32 T: target — (offset;5)'* || offset || 02
condition —~ (GPR[rs] # GPR]rt])
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR[rs] # GPR]rt])
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction

endif

Exceptions:

None

A-40 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BREAK Breakpoint BREAK

31 26 25 65 0
SPECIAL code BREAK
000000 001101

6 20 6
Format:
BREAK
Description:

A breakpoint trap occurs, immediately and unconditionally transferring
control to the exception handler.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

32,64 T: BreakpointException

Exceptions:

Breakpoint exception

MIPS R4000 Microprocessor User's Manual A-41

Appendix A

CACHE Cache CACHE

31 26 25 21 20 16 15 0
CACHE base op offset
101111
6 5 5 16
Format:

CACHE op, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The virtual address is translated to
a physical address using the TLB, and the 5-bit sub-opcode specifies a
cache operation for that address.

If CPO is not usable (User or Supervisor mode) the CPO enable bit in the
Status register is clear, and a coprocessor unusable exception is taken. The
operation of this instruction on any operation/cache combination not
listed below, or on a secondary cache when none is present, is undefined.
The operation of this instruction on uncached addresses is also undefined.

The Index operation uses part of the virtual address to specify a cache
block.

For a primary cache of 2CACHEBITS pytes with 2LINEBITS pytes per tag,
VAddrCACHEB|T5 . LINEBITS SDECifieS the block.

For a secondary cache of 2CACHEBITS pytes with 2LINEBITS pytes per tag,
PAddrcacHesiTs ... LINEBITs SPecifies the block.

Index Load Tag also uses vAddr negiTs... 3 t0 select the doubleword for
reading ECC or parity. When the CE bit of the Status register is set, Hit
WriteBack, Hit WriteBack Invalidate, Index WriteBack Invalidate, and Fill
also use VAddr negiTs . 3 to select the doubleword that has its ECC or
parity modified. This operation is performed unconditionally.

The Hit operation accesses the specified cache as normal data references,
and performs the specified operation if the cache block contains valid data
with the specified physical address (a hit). If the cache block is invalid or
contains a different address (a miss), no operation is performed.

A-42

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

CACHE conued) CACHE

Write back from a primary cache goes to the secondary cache (if there is
one), otherwise to memory. Write back from a secondary cache always
goes to memory. A secondary write back always writes the most recent
data; the data comes from the primary data cache, if present, and modified
(the W bit is set). Otherwise the data comes from the specified secondary
cache. The address to be written is specified by the cache tag and not the
translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For
Index operations (where the physical address is used to index the cache
but need not match the cache tag) unmapped addresses may be used to
avoid TLB exceptions. This operation never causes TLB Modified or
Virtual Coherency exceptions.

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache
0 | primary instruction
1 D primary data
2 Sl secondary instruction
3 SD secondary data (or combined instruction/data)

MIPS R4000 Microprocessor User's Manual A-43

Appendix A

CACHE

Cach
(contailr(;ugd) CAC H E

Bits 20...18 (this value is listed under the Code column) of the instruction
specify the operation as follows:

Code

Caches

Name

Operation

I, SI

Index
Invalidate

Set the cache state of the cache block to Invalid.

Index
Writeback
Invalidate

Examine the cache state and Writeback bit (W bit) of the primary data
cache block at the index specified by the virtual address. If the state is
not Invalid and the W bit is set, write the block back to the secondary
cache (if present) or to memory (if no secondary cache). The address to
write is taken from the primary cache tag. When a secondary cache is
present, and the CE bit of the Status register is set, the contents of the
ECC register is XOR'd into the computed check bits during the write to
the secondary cache for the addressed doubleword. Set the cache state
of primary cache block to Invalid. The Wbit is unchanged (and irrelevant
because the state is Invalid).

SD

Index
Writeback
Invalidate

Examine the cache state of the secondary data cache block at the index
specified by the physical address. If the block is dirty (the state is Dirty
Exclusive or Dirty Shared), write the data back to memory. Like all
secondary writebacks, the operation writes any modified data for the
addresses from the primary data cache. The address to write is taken
from the secondary cache tag. The Pldx field of the secondary tag is
used to determine the locations in the primaries to check for matching
primary blocks. In all cases, set the state of the secondary cache block
and all matching primary subblocks to Invalid. No Invalidate is sent on
the R4000’s system interface.

All

Index Load
Tag

Read the tag for the cache block at the specified index and place it iinto
the TaglLo and TagHi CPO registers, ignoring any ECC or parity errors.
Also load the data ECC or parity bits into the ECC register.

All

Index Store
Tag

Write the tag for the cache block at the specified index from the TagLo
and TagHi CPO registers. The processor uses computed parity for the
primary caches and the TagLo register in the case of the secondary
cache.

A-44

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

CACHE

Cach
(contailr(;ugd) CAC H E

Code

Caches

Name

Operation

SD

Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from memory
when writing new contents into an entire cache block. If the cache block
is valid but does not contain the specified address (a valid miss) the
secondary block is vacated. The data is written back to memory if dirty
and all matching blocks in both primary caches are invalidated. As usual
during a secondary writeback, if the primary data cache contains
modified data (matching blocks with W bit set) that modified data is
written to memory. If the cache block is valid and contains the specified
physical address (a hit), the operation cleans up the primary caches to
avoid virtual aliases: all blocks in both primary caches that match the
secondary line are invalidated without writeback. Note that the search for|
matching primary blocks uses the virtual index of the Pldx field of the
secondary cache tag (the virtual index when the location was last used)
and not the virtual index of the virtual address used in the operation (the
virtual index where the location will now be used). If the secondary tag
and address do not match (miss), or the tag and address do match (hit)
and the block is in a shared state, an invalidate for the specified address
is sent over the System interface. In all cases, the cache block tag must
be set to the specified physical address, the cache state must be set to
Dirty Exclusive, and the virtual index field set from the virtual address.
The CH bit in the Status register is set or cleared to indicate a hit or miss

Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from secondary
cache or memory when writing new contents into an entire cache block.

If the cache block does not contain the specified address, and the block
is dirty, write it back to the secondary cache (if present) or otherwise to
memory. In all cases, set the cache block tag to the specified physical

address, set the cache state to Dirty Exclusive.

Hit Invalidate

If the cache block contains the specified address, mark the cache block
invalid.

S|, SD

Hit Invalidate

If the cache block contains the specified address, mark the cache block
invalid and also invalidate all matching blocks, if present, in the primary
caches (the Pldx field of the secondary tag is used to determine the
locations in the primaries to search). The CH bit in the Status register is
set or cleared to indicate a hit or miss.

Hit Writeback
Invalidate

If the cache block contains the specified address, write the data back if it
is dirty, and mark the cache block invalid. When a secondary cache is
present, and the CE bit of the Status register is set, the contents of the
ECC register is XOR'd into the computed check bits during the write to
the secondary cache for the addressed doubleword.

MIPS R4000 Microprocessor User's Manual A-45

Appendix A

CACHE

Cach
(contailr(;ugd) CAC H E

Code

Caches

Name

Operation

SD

Hit Writeback
Invalidate

If the cache block contains the specified address, write back the data (if
dirty), and mark the secondary cache block and all matching blocks in
both primary caches invalid. As usual with secondary writebacks,
modified data in the primary data cache (matching block with the W bit
set) is used during the writeback. The Pldx field of the secondary tag is
used to determine the locations in the primaries to check for matching
primary blocks. The CH bit in the Status register is set or cleared to
indicate a hit or miss.

Fill

Fill the primary instruction cache block from secondary cache or memory.
If the CE bit of the Status register is set, the content of the ECC register
is used instead of the computed parity bits for addressed doubleword
when written to the instruction cache. For the R4000PC, the cache is
filled from memory. For the R4000SC and R4000MC, the cache is filled
from the secondary cache whether or not the secondary cache block is
valid or contains the specified address.

Hit Writeback

If the cache block contains the specified address, and the W bit is set,
write back the data. The W bit is not cleared; a subsequent miss to the
block will write it back again. This second writeback is redundant, but not
incorrect. When a secondary cache is present, and the CE bit of the
Status register is set, the content of the ECC register is XOR’d into the
computed check bits during the write to the secondary cache for the
addressed doubleword. Note: The W bit is not cleared during this
operation due to an artifact of the implementation; the W bit is
implemented as part of the data side of the cache array so that it can be
written during a data write.

SD

Hit Writeback

If the cache block contains the specified address, and the cache state is
Dirty Exclusive or Dirty Shared, data is written back to memory. The
cache state is unchanged; a subsequent miss to the block causes it to be
written back again. This second writeback is redundant, but not
incorrect. The CH bit in the Status register is set or cleared to indicate a
hit or miss. The writeback looks in the primary data cache for modified
data, but does not invalidate or clear the Writeback bit in the primary datal
cache. Note: The state of the secondary block is not changed to clean
during this operation because the W bit of matching sub-blocks cannot
be cleared to put the primary block in a clean state.

Hit Writeback

If the cache block contains the specified address, data is written back
unconditionally. When a secondary cache is present, and the CE bit of
the Status register is set, the contents of the ECC register is XOR'd into
the computed check bits during the write to the secondary cache for the
addressed doubleword.

A-46

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

CACHE

Cach
(contailr(;ugd) CAC H E

Code

Caches

Name

Operation

SI,SD

Hit Set Virtual

This operation is used to change the virtual index of secondary cache
contents, avoiding unnecessary memory operations. If the cache block
contains the specified address, invalidate matching blocks in the primary
caches at the index formed by concatenating Pldx in the secondary
cache tag (not the virtual address of the operation) and vAddr,; 4, and
then set the virtual index field of the secondary cache tag from the
specified virtual address. Modified data in the primary data cache is not
preserved by the operation and should be explicitly written back before
this operation. The CH bit in the Status register is set or cleared to
indicate a hit or miss.

Operation:

32,64

T:

vAddr — ((offset;5)*® || offset;s_o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vVAddr, DATA)
CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual A-47

Appendix A

M Control F
CFCz O\éeop%rg:écs)soﬁom CFCz

31 26 25 21 20 16 15 11 10 0
COPz CF rt rd 0
0100xx* 00010 00000
6 5 5 5 11
Format:
CFCzrt, rd
Description:

The contents of coprocessor control register rd of coprocessor unit z are
loaded into general register rt.

This instruction is not valid for CPO.

Operation:

32 T: data — CCRJz,rd]
T+1: GPR[rt] ~ data

64 T: data — (CCR[z,rd]3;)%? || CCRIz,rd]
T+1: GPR[rt] ~ data

Exceptions:
Coprocessor unusable exception

*Opcode Bit Encoding:

F 7 Bit#31 30 29 28 27 26 25 24 23 22 21 0

CFCZ o2 [oolo 2 oo o] o]
Bit#31 30 29 28 27 26 25 24 23 22 21 0
crcol 01]ofol1fofofolofaf[o] |

. H_/\ !

N ™~
Opcode \ Coprocessor Suboperation
Coprocessor Unit Number

A-48 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

COPz Coprocessor Operation COPz

31 26 25 24 0

cofun
0100xx*| 1

6 1 25

COPz CO

Format:

COPz cofun
Description:

A coprocessor operation is performed. The operation may specify and
reference internal coprocessor registers, and may change the state of the
coprocessor condition line, but does not modify state within the processor
or the cache/memory system. Details of coprocessor operations are
contained in Appendix B.

Operation:

32,64 T: CoprocessorOperation (z, cofun)

Exceptions:

Coprocessor unusable exception
Coprocessor interrupt or Floating-Point Exception (R4000 CP1 only)

*Opcode Bit Encoding:

COP3Z git# 3130 29 28 27 26 25 0
copo 0] 1/ 0]0 001 |

Bit# 3130 29 28 27 26 25 .
COPl‘O‘l‘O‘O‘O‘l‘l ‘

Bit# 3130 29 28 27 26 25 o

COPZ‘O‘l‘O‘O‘l‘O‘l ‘

%/_H_A_VJ

L CO sub-opcode (see end of Appendix A)
Opcode L Coprocessor Unit Number

MIPS R4000 Microprocessor User's Manual A-49

Appendix A

CTCz Move Control to Coprocessor CTCz

31 26 25 21 20 16 15 11 10 0
COPz CT rt rd 0
0100xx*| 00110 00000000000
6 5 5 5 11
Format:
CTCzrt, rd
Description:

The contents of general register rt are loaded into control register rd of
coprocessor unit z.

This instruction is not valid for CPO.

Operation:

32,64 T: data — GPR[r]
T+ 1: CCR[z,rd] ~ data

Exceptions:

Coprocessor unusable

*See “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

A-50 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DADD

Doubleword Add

DADD

31

26 25

21 20

16 15

11 10 6

5

0

SPECIAL

000000

s

rt

rd

0
00000

DADD
101100

6

5

6

Format:
DADD rd, rs, rt

Descri

ption:

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ (2's
complement overflow). The destination register rd is not modified when

an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64

T: GPR[rd] - GPR][rs] + GPR]rt]

Exceptions:

Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-51

Appendix A

DADID| Doubleword Add Immediate DADDI
31 26 25 21 20 16 15 0
DADDI rs rt immediate
011000
6 5 5 16
Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2’s
complement overflow). The destination register rt is not modified when
an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T GPRI[rt] — GPR[rs] + (immediate;5)*® | | immediate;s ,

Exceptions:

Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

A-52 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DADDIU

Doubleword Add
Immediate Unsigned

DADDIU

31 26 25 21 20 16 15 0
DADDIU rs it immediate
011001
6 5 5 16
Format:

DADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.

No integer overflow exception occurs under any circumstances.

The only difference between this instruction and the DADDI instruction is
that DADDIU never causes an overflow exception.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64 T

GPR [rf] — GPR[rs] + (immediate;5)*® || immediate;s_g

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-53

Appendix A

DADDU Doubleword Add Unsigned DADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DADDU
000000 00000 101101
6 5 5 5 5 6

Format:

DADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD instruction is
that DADDU never causes an overflow exception.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T. GPRIrd] - GPR[rs] + GPRIr]

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-54 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DDIV

Doubleword Divide DDIV

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DDIV
000000 00 0000 O0O0O0O 011110
6 5 5 10 6
Format:
DDIV rs, rt
Description:
The contents of general register rs are divided by the contents of general
register rt, treating both operands as 2’s complement values. No overflow
exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.
This instruction is typically followed by additional instructions to check
for a zero divisor and for overflow.
When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.
If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:
64 T-2: LO ~ undefined
HI « undefined
T-1: LO ~ undefined
HI ~ undefined
T: LO ~ GPRJrs] div GPR]rt]
HI ~ GPR[rs] mod GPRrt]
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-55

Appendix A

DDIVU

Doubleword Divide Unsigned

DDIVU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DDIVU
000000 000000 O0O0O0O 011111
6 5 5 10 6

Format:
DDIVU rs, rt
Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check
for a zero divisor.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.
Operation:
64 T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
T: LO ~ (0] GPR]rs]) div (0 || GPR[rt])
HI < (0] GPRJ[rs]) mod (0 || GPR]rt])
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-56

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DIV

Divide DIV

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIV
000000 00 0000 O00O0O 011010
6 5 5 10 6
Format:
DIV rs, rt
Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as 2’s complement values. No overflow
exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check
for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

MIPS R4000 Microprocessor User's Manual A-57

Appendix A

DIV

Divide
(continued) D IV

Operation:
32 T-2: LO ~ undefined
HI ~ undefined
T-1 LO ~ undefined
HI ~ undefined
T: LO « GPRJrs] div GPRJrt]
HI < GPRJ[rs] mod GPR]r]
64 T-2: LO ~ undefined
HI ~ undefined
T-1 LO ~ undefined
HI ~ undefined
T: q ~ GPR(rsl3; g div GPR[rtl31 o
r — GPR[rS]31“_0 mod GPR[rt]31_“0
LO - (Q31)3322 [l d31...0
HI < (r39)” llr31.0
Exceptions:
None

A-58

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DIVU Divide Unsigned DIVU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIVU
000000 000000O0O0O0O 011011
6 5 5 10 6
Format:
DIVU rs, rt
Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check
for a zero divisor.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

MIPS R4000 Microprocessor User's Manual A-59

Appendix A

[)l\/lJ Divide Unsigned [)l\/lJ

(continued)

Operation:
32 T-2: LO ~ undefined
HI « undefined
T-1 LO ~ undefined
HI ~ undefined
T: LO < (0] GPR]rs]) div (0 || GPRIrt])
HI < (0]] GPR[rs]) mod (0 || GPR]rt])
64 T-2: LO ~ undefined
HI — undefined
T-1: LO — undefined
HI — undefined
T q — (0|l GPRIrs]ay..0) div (0 || GPRIrt]3;.. o)
r — (0] GPR[rs]z;. o) mod (0 || GPRIrt]3;. o)
LO - (@)% |l 9310
HI — (30* 310
Exceptions:
None

A-60 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Doubleword Move From
D M FCO System Control Coprocessor D M FCO

31 26 25 21 20 16 15 11 10 0
COPO DMF rt rd 0
010000 00001 000 0000 00OO0
6 5 5 5 11
Format:
DMFCO rt, rd
Description:

The contents of coprocessor register rd of the CP0 are loaded into general
register rt.

This operation is defined for the R4000 operating in 64-bit mode and in 32-
bit kernel mode. Execution of this instruction in 32-bit user or supervisor
mode causes a reserved instruction exception. All 64-bits of the general
register destination are written from the coprocessor register source. The
operation of DMFCO on a 32-bit coprocessor 0 register is undefined.

Operation:

64 T: data — CPR[0,rd]
T+1: GPR][rt] ~ data

Exceptions:

Coprocessor unusable exception
Reserved instruction exception (R4000 in 32-bit user mode
R4000 in 32-bit supervisor mode)

MIPS R4000 Microprocessor User's Manual A-61

Appendix A

Doubleword Move To
D MTCO System Control Coprocessor D MTCO

31

26 25 21 20 16 15 1110 0

DMT rt rd 0
00101 000 0000 0000

5 5 5 11

Format:

DMTCO rt, rd

Description:

Operat

The contents of general register rt are loaded into coprocessor register rd
of the CPO.

This operation is defined for the R4000 operating in 64-bit mode or in 32-
bit kernel mode. Execution of this instruction in 32-bit user or supervisor
mode causes a reserved instruction exception.

All 64-bits of the coprocessor 0 register are written from the general
register source. The operation of DMTCO0 on a 32-bit coprocessor 0 register
is undefined.

Because the state of the virtual address translation system may be altered
by this instruction, the operation of load instructions, store instructions,
and TLB operations immediately prior to and after this instruction are
undefined.

ion:

64

T: data « GPR[r]
T+1: CPRI[O,rd] ~ data

Exceptions:

Coprocessor unusable exception (R4000 in 32-bit user mode
R4000 in 32-bit supervisor mode)

A-62

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

D M U L" Doubleword Multiply D M U |_T
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DMULT
000000 000000 O0O0O0O 011100
6 5 5 10 6
Format:
DMULT rs, rt
Description:
The contents of general registers rs and rt are multiplied, treating both
operands as 2’s complement values. No integer overflow exception occurs
under any circumstances.
When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.
If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:
64 T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
T t ~ GPRJrs] * GPR]rt]
Hl — 1107 64
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-63

Appendix A

DMULTU " rdgned ™ DMULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DMULTU
000000 0000000000 011101
6 5 5 10
Format:

DMULTU s, rt

Description:

Operat

The contents of general register rs and the contents of general register rt
are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

ion:

64 T-2: LO — undefined

Hl — undefined

T-1: LO « undefined

HI — undefined

T: t « (0]] GPR]rs]) * (0 || GPRYrt])
HI <1127 64
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-64

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSLL Doubleword Shift Left Logical DSLL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL
0000O0O0 00000 111000
6 5 5 5 5 6

Format:

DSLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros
into the low-order bits. The result is placed in register rd.

Operation:

64 T. s<0]lsa
GPR[rd] — GPRJrt]3-s)...0 Il 0s

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-65

Appendix A

DSLLV

Doubleword Shift Left

Logical Variable

DSLLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSLLV
000000 00000 010100
6 5 5 5 5 6

Format:

DSLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits
specified by the low-order six bits contained in general register rs,
inserting zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.
Operation:
64 T: s « GPRJrs]5 o
GPRI[rd] - GPR[rt]g3s). 0 Il 0°
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-66

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSLL32

Doubleword Shift Left

DSLL32

Logical + 32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL32
000000 00000 111100
6 5 5 5 5 6
Format:

DSLL32 rd, rt, sa

Description:

The contents of general register rt are shifted left by 32+sa bits, inserting
zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.
Operation:
64 T: s« 1] sa
GPR[rd]<— GPR[I’t](63_S)m0 ” OS
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-67

Appendix A

Doubleword
DSRA Shift Right Arithmetic DSRA
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRA
000000 00000 111011
6 5 5 5 5 6
Format:

DSRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: s« 0]lsa
GPRIrd] — (GPRIrt]g3)° || GPRIr] g3

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-68 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Doubleword Shift Right
)S RAV Arithmetic Variabl% DS RAV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSRAV
000000 00000 010111
6 5 5 5 5 6

Format:
DSRAV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of bits
specified by the low-order six bits of general register rs, sign-extending the
high-order bits. The result is placed in register rd.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T:. s~ GPR[rs]5 g

GPR[rd] — (GPR|rt]g3)° || GPR[rt]g3 s
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-69

Appendix A

Doubl d Shift Right
DSRA32 " Aithmetic + 32 DSRA32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRA32
000000 00000 111111
6 5 5 5 5
Format:

DSRA32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32+sa bits, sign-
extending the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: s<1]lsa
GPR(rd] — (GPR{rtlg3)* || GPR[r] ¢3_. s

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-70 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSRL

Doubleword
Shift Right Logical

DSRL

Reserved instruction exception (R4000 in 32-bit mode)

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRL
000000 00000 111010
6 5 5 5 5 6

Format:
DSRL rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is placed in register rd.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T. s<0]|sa

GPR[rd] — 0°|| GPR][rt]g3 s
Exceptions:

MIPS R4000 Microprocessor User's Manual

A-71

Appendix A

Doubleword Shift Right

DS R LV Logical Variable

DSRLV

31

26 25 21 20 16 15

11 10 6

SPECIAL rs rt rd
000000

0
00000

6 5 5 5

5

Format:
DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits
specified by the low-order six bits of general register rs, inserting zeros
into the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64 T: s < GPR[rsls o
GPR[rd] —~ 0° || GPR[rtlg3..s

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-72

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSRL32

Doubleword Shift Right

DSRL32

Reserved instruction exception (R4000 in 32-bit mode)

Logical + 32
31 26 25 21 20 16 15 11 10 6 0
SPECIAL 0 rt rd sa DSRL32
000000 00000 111110
6 5 5 5 5 6
Format:
DSRL32rd, rt, sa
Description:
The contents of general register rt are shifted right by 32+sa bits, inserting
zeros into the high-order bits. The result is placed in register rd.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception
Operation:
64 T: s« 1] sa
GPR[rd] — 0° || GPR][rt]g3. s
Exceptions:

MIPS R4000 Microprocessor User's Manual

A-73

Appendix A

:)SU B Doubleword Subtract DSU B
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSUB
000000 00000 101110
6 5 5 5 5 6
Format:
DSUB rd, rs, rt
Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.
The only difference between this instruction and the DSUBU instruction is
that DSUBU never traps on overflow.
An integer overflow exception takes place if the carries out of bits 62 and
63 differ (2's complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:
64 T: GPRJrd] — GPR[rs] — GPR]rt]
Exceptions:
Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)
A-74 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSUBU

Doubleword Subtract Unsigned

DSUBU

Reserved instruction exception (R4000 in 32-bit mode)

31 26 25 21 20 16 15 11 10 6 0
SPECIAL rs rt rd 0 DSuUBU
000000 00000 101111

6 5 5 5 5 6

Format:
DSUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.
The only difference between this instruction and the DSUB instruction is
that DSUBU never traps on overflow. No integer overflow exception
occurs under any circumstances.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception

Operation:

64 T: GPRJ[rd] « GPR[rs] — GPR]rt]

Exceptions:

MIPS R4000 Microprocessor User's Manual

A-75

Appendix A

ERET Exception Return ERET

31 26 2524 65 0
COPO CcoO 0 ERET
010000 1 0000000 0OO00OO0O0OOOOOOOO 011000
6 1 19 6

Format:
ERET
Description:

ERET is the R4000 instruction for returning from an interrupt, exception,
or error trap. Unlike a branch or jump instruction, ERET does not execute
the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR, = 1), then load the PC from
the ErrorEPC and clear the ERL bit of the Status register (SR,). Otherwise
(SR, = 0), load the PC from the EPC, and clear the EXL bit of the Status
register (SRy).

An ERET executed between a LL and SC also causes the SC to fail.

Operation:

32,64 T: if SR, =1then

PC ~ ErrorEPC

SR « SR3; 310 SRy o
else

PC « EPC

'SR ~ SR31. 5|1 0]| SRq
endif
LLbit « O

Exceptions:

Coprocessor unusable exception

A-76 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

J Jump J

31 26 25 0
J target
000010
6 26
Format:
J target
Description:

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction.

Operation:

32 T: temp - target
T+1: PC « PCg; g | temp || 02

64 T: temp - target
T+1: PC « PCg3 g |l temp || 02

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-77

Appendix A

JAL Jump And Link JAL

31 26 25 0
JAL target
000011
6 26
Format:
JAL target
Description:

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction. The address of the instruction after the delay slot is placed in
the link register, r31.

Operation:

32 T: temp - target
GPR[31] -« PC+8
T+1: PC « PC 3, ,g |l temp || 02

64 T:. temp — target
GPR[31] - PC+8
T+1: PC « PC g3 _,g | temp || 02

Exceptions:

None

A-78 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

JALR

Jump And Link Register JALR

31

26 25 21 20 16 15 11 10 6 5 0

SPECIAL
00000O0

rs 0 rd 0 JALR
00000 00000 001001

6

5 5 5 5 6

Format:

JALR rs
JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general
register rs, with a delay of one instruction. The address of the instruction
after the delay slot is placed in general register rd. The default value of rd,
if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction
does not have the same effect when re-executed. However, an attempt to
execute this instruction is not trapped, and the result of executing such an
instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register
instruction must specify a target register (rs) whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

Operation:

32,64

T: temp — GPR [rs]
GPR[rd] -« PC+8
T+1: PC ~ temp

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-79

Appendix A

JR

Jump Register

JR

31

26 25

2120

65

SPECIAL
00000O0

rs

0
000 0000 0OO0O0OOOOO

JR
001000

6

15

6

Format:

JR rs

Description:

The program unconditionally jumps to the address contained in general
register rs, with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction
must specify a target register (rs) whose two low-order bits are zero. If
these low-order bits are not zero, an address exception will occur when the
jump target instruction is subsequently fetched.

Operation:

32,64

T:
T+1:

temp « GPR]rs]
PC ~ temp

Exceptions:

None

A-80

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

| B Load Byte

LB

31 26 25 21 20 16 15 0
LB base rt offset
100000
6 5 5 16
Format:

LB rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are sign-extended and

loaded into general register rt.

Operation:

32 T:

64 T

VAddr ((offset;5)'® || offset;s o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze _1 3| (PAddr, o xor ReverseEndian3)
mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, oxor BigEndianCPU®

24
GPR[rt] « (Memz.gspyte)” || MEM7igepyte grbyte

VAddr — ((offset;5)* || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze — 1 3|l (PAddr, o xor ReverseEndian®)

mem — LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, o xor BigEndianCPU®

56
GPR[rt] — (Memz7.gepyyte)” || MEM7.igapyte. . gobyte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual

A-81

Appendix A

_BU Load Byte Unsigned LBU
31 26 25 21 20 16 15 0
LBU base rt offset
100100
6 5 5 16
Format:
LBU rt, offset(base)
Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.
Operation:
32 T: vAddr — ((offset;5)'® || offset;s) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpg;ze 1 3 |l (PAddr, o xor ReverseEndian®)
mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, o xor BigEndianCPU®
GPRIrt] — 0%* || memy,g- byte...8* byte
64 T: vAddr — ((offset;s)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize — 1 3 || (PAddr, o xor ReverseEndian®)
mem — LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, oxor BigEndianCPU3
GPRI[rt] — 0°° || memz.gs pyte...8* byte
Exceptions:
TLB refill exception TLB invalid exception
Bus error exception Address error exception
A-82 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LD Load Doubleword LD
31 26 25 21 20 16 15 0
LD base rt offset
110111
6 5 5 16
Format:
LD rt, offset(base)
Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the 64-bit
doubleword at the memory location specified by the effective address are
loaded into general register rt.
If any of the three least-significant bits of the effective address are non-
zero, an address error exception occurs.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:

64 T: VAddr ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR]rt] « mem

Except

ions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit user mode
R4000 in 32-bit supervisor mode)

MIPS R4000 Microprocessor User's Manual A-83

Appendix A

LDCz

Load Doubleword To Coprocessor

LDCz

31 26 25 21 20 16 15 0
LDCz base rt offset
1101xx*
6 5 5 16

Format:
LDCz rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The processor reads a doubleword
from the addressed memory location and makes the data available to
coprocessor unit z. The manner in which each coprocessor uses the data
is defined by the individual coprocessor specifications.
If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.
This instruction is not valid for use with CPO.
This instruction is undefined when the least-significant bit of the
rt field is non-zero.
*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

A-84 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LDCZ Load Doubleword To Coprocessor LDCZ

(continued)

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

COPzLD (rt, mem)

64 T: VAddr — ((offset;s)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

COPzLD (rt, mem)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:
LDCz Bit#31 30 29 28 27 26 0

ipcl 1|1 0] 1 0 1
Bit#31 30 29 28 27 26 0
ipc2| 1|1 0|1 1 0
o _/

OMe Coprocessor Unit Number

MIPS R4000 Microprocessor User's Manual A-85

Appendix A

LDL

Load Doubleword Left L D |_

31 26 25 21 20 1615 0

LDL
011010

base rt offset

6

Format:

LDL rt, offset(base)

Description:

This instruction can be used in combination with the LDR instruction to
load a register with eight consecutive bytes from memory, when the bytes
cross a doubleword boundary. LDL loads the left portion of the register
with the appropriate part of the high-order doubleword; LDR loads the
right portion of the register with the appropriate part of the low-order
doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte
into the high-order (left-most) byte of the register; then it loads bytes from
memory into the register until it reaches the low-order byte of the
doubleword in memory. The least-significant (right-most) byte(s) of the
register will not be changed.

memory
(big-endian) register

address 8 8

9]10|11|12|13| 14|15

address 0 0

12073 256l 7| before| A|B[C|D|E[F]|G|H]s24

LDL $24,3($0)

after [3]4]5]6[7]F[G[H]| s24

A-86

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LDL Load Doubleword Left LDL

(continued)

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDL (or LDR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpsize_;1 3 || (PAddr, o xor ReverseEndian®)

if BigEndianMem = 0 then
pAddr — pAddrpgize_; 3|l 03
endif
byte — VAddr, o xor BigEndianCPU?
mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPRIrt] — memz.gspyte...0 Il GPR[rMtls5_gsbyte...0

MIPS R4000 Microprocessor User's Manual A-87

Appendix A

Load Doubleword Left
I—DI— (continued) I—DI—

Given a doubleword in a register and a doubleword in memory, the
operation of LDL is as follows:

LDL

Register | A | B | C| D | E| F | G| H

Memory | J K L M N O P
BigEndianCPU =0 BigEndianCPU = 1
VAddr 5, g destination type offset destination type offset
LEM BEM LEM BEM

0 PBCDEFGH| O 0O 7 |1 J KLMNOP| 7 0 O
1 OPCDEFGH| 1 0O 6 JKLMNOPH| 6 0 1
2 NOPDEFGH| 2 0 5 |KLMNOPGH| 5 0o 2
3 MNOPEFGP| 3 0 4 |[LMNOPFGH| 4 0 3
4 L MNOPFGH| 4 0 3 MNOPEFGH| 3 0 4
5 KLMNOPGH| 5 0 2 I[NOPDEFGH| 2 0 5
6 J KLMNOPH| 6 0 1 [OPCDEFGH| 1 0 6
7 I JKLMNOP| 7 0O O PBCDEFGH| O 0 7

LEM Little-endian memory (BigEndianMem = 0)

BEM BigendianMem =1

Type AccessType (see Table 2-1) sent to memory

Offset pAddr,_,sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

A-88 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

| DR

Load Doubleword Right I_ D R

31 26 25 21 20 16 15 0
LDR base rt offset
011011
6 5 5 16
Format:

LDR rt, offset(base)

Description:

This instruction can be used in combination with the LDL instruction to
load a register with eight consecutive bytes from memory, when the bytes
cross a doubleword boundary. LDR loads the right portion of the register
with the appropriate part of the low-order doubleword; LDL loads the left
portion of the register with the appropriate part of the high-order
doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte
into the low-order (right-most) byte of the register; then it loads bytes from
memory into the register until it reaches the high-order byte of the
doubleword in memory. The most significant (left-most) byte(s) of the
register will not be changed.

memory
(big-endian)

address 8 8

register
9 /1011|1213 |14 |15

address0 | O

112 13lals 6| 7| before[A|B[C|D|E|F|G|H| 324

LDR $24,4($0)
register

after ‘A‘B‘C‘0‘1‘2‘3‘4‘$24

MIPS R4000 Microprocessor User's Manual A-89

Appendix A

L DR Load Doubleword Right L DR

(continued)

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDR (or LDL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: VAddr — ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze_1 3|l (PAddr, o xor ReverseEndian®)

if BigEndianMem = 1 then
pAddr — pAddrs; 5] 0°
endif
byte — vAddr, o xor BigEndianCPU?
mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPRIrt] — GPR{rtlg3 g4-g+byte || MEMg3. grhyte

A-90 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LDR

Load Doubleword Right
(continued)

Given a doubleword in a register and a doubleword in memory, the

operation of LDR is as follows:

LDR

LDR
Register A B C D E F G H
Memory I J K L M N O P
BigEndianCPU =0 BigEndianCPU =1
VvAddr 5 g destination type offset destination type offset
LEM BEM LEM BEM
0 I JKLMNOP| 7 0 0 |ABCDEFGI 0 7 0
1 Al JKLMNO| 6 1 0 |ABCDEFI J| 1 6 O
2 ABIl JKLMN| 5 2 0 |ABCDEI J K| 2 5 0
3 ABCIJKLM 14 3 0 |ABCDI JKL| 3 4 0
4 ABCDI JKL| 3 4 0 |ABCIlI JKL M| 4 3 0
5 ABCDEI JK| 2 5 0 |ABI JKLMN| 5 2 0
6 ABCDEFI J| 1 6 0 |AIl JKLMNO| 6 1 0
7 A BCDEFGI 0 7 0 |l J KLMNOP| 7 0O O
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr,_ ,sent to memory
Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-91

Appendix A

_H

Load Halfword |_ H

31

26 25 21 20 16 15 0

LH

100001

base rt offset

6

Format:

LH rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are sign-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address
error exception occurs.

Operation:

32 T:

64 T:

vAddr — ((offset;5)° || offset;s o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize — 1.3 || (PAddr, g xor (ReverseEndian || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU? || 0)

GPRIrt] ~ (memls+8*byte):LG |l memys.geyte...8* byte

VAddr « ((offset;5)*® || offset;s) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze_ 1.3l (PAddr,_ g xor (ReverseEndian || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, xor (BigEndianCPU? || 0)

48
GPR[rt] « (memys.gepyte)™ || MeMysigepyte.. 8% byte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception

Address error exception

A-92

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LHU

Load Halfword Unsigned L HU

31 26 25 21 20 16 15 0

LHU
100101

base rt offset

6

Format

LHU rt, offset(base)

Description:

Operat

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address
error exception occurs.

ion:

32 T:

64 T

vAddr — ((offset;5)!® || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize_1 3 || (PAddr, o xor (ReverseEndian? || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, oxor (BigEndianCPU? || 0)

GPRI[r] ~ 0% || MEM;5.+g+pyte...8*byte

vAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize 1. 3| (PAddr, g xor (ReverseEndian? || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, xor (BigEndianCPU2 [| 0)

GPR[rt] - 048 || memis.gspyte...a*byte

Exceptions:

TLB refill exception TLB invalid exception
Bus Error exception Address error exception

MIPS R4000 Micro

processor User's Manual A-93

Appendix A

| L Load Linked L L
31 26 25 21 20 16 15 0
LL base rt offset
110000

6 5 5 16

Format:

LL rt, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended.

The processor begins checking the accessed word for modification by
other processor and devices.

Load Linked and Store Conditional can be used to atomically update
memory locations as shown:

L1:
LL T1, (TO)
ADD T2,T1,1
SC T2, (TO)
BEQ T2,0,L1
NOP

This atomically increments the word addressed by T0. Changing the ADD
to an OR changes this to an atomic bit set. This instruction is available in
User mode, and it is not necessary for CPO to be enabled.

The operation of LL is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of LL
is undefined if the addressed location is noncoherent. A cache miss that
occurs between LL and SC may cause SC to fail, so no load or store
operation should occur between LL and SC, otherwise the SC may never
be successful. Exceptions also cause SC to fail, so persistent exceptions
must be avoided. If either of the two least-significant bits of the effective
address are non-zero, an address error exception takes place.

A-94

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LL

Load Linked LL

(continued)

Operation:

32

64

T:

vAddr — ((offset;5)° || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize-1_ 3 Il (PAddr, g xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigendianCPU || 02)

GPR[rt] « memsy.gepyte.. ghyte

LLbit ~ 1

vAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 0?)
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU || 0?)

GPR[rt] « (mem31+8*byte)32 || mem3y.geyte...8*byte

LLbit « 1

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual

A-95

Appendix A

LLD

Load Linked Doubleword

LLD

31 26 25 21 20 16 15 0
LLD base rt offset
110100
6 5 5 16
Format:

LLD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the doubleword at
the memory location specified by the effective address are loaded into
general register rt.

The processor begins checking the accessed word for modification by

other processor and devices.

Load Linked Doubleword and Store Conditional Doubleword can be used
to atomically update memory locations:

L1:

LLD

ADD
SCD
BEQ
NOP

T1, (TO)
T2,T1,1
T2, (TO)
T2,0,L1

This atomically increments the word addressed by TO. Changing the ADD

to an OR changes this to an atomic bit set.

A-96

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LLD

Load Linked Doubleword
(continued) I— I— D

The operation of LLD is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of
LLD is undefined if the addressed location is noncoherent. A cache miss
that occurs between LLD and SCD may cause SCD to fail, so no load or
store operation should occur between LLD and SCD, otherwise the SCD
may never be successful. Exceptions also cause SCD to fail, so persistent
exceptions must be avoided.

This instruction is available in User mode, and it is not necessary for CP0
to be enabled.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:
64 T: vVvAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR][rt] « mem
LLbit ~ 1
Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-97

Appendix A

L UI Load Upper Immediate L UI

31 26 25 21 20 16 15 0
LUI 0 rt immediate
001111 00000
6 5 5 16
Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of
zeros. The result is placed into general register rt. In 64-bit mode, the
loaded word is sign-extended.

Operation:

32 T: GPRIt] — immediate || 016

64 T: GPRJr] — (immediate;5)3? || immediate || 01®

Exceptions:

None

A-98 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LW

Load Word LW

31 26 25 21 20 16 15 0
LW base rt offset
100011
6 5 5 16
Format:
LW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the

memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended. If either of
the two least-significant bits of the effective address is non-zero, an

add

Operation:

ress error exception occurs.

32 T:

64 T

VAddr — ((offset;s)1 || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, xor (BigEndianCPU || 0?%)

GPR[rt] — memzy.gepyte.. ghyte

VAddr < ((offset;s)*® || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 02))
mem — LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — VvAddr, o xor (BigEndianCPU || 0%)

32
GPR[r] « (Mmemszy.gupyte)” || MeM3y.igpyte.. 8*byte

Exceptions:
TLB refill exception TLB invalid exception

Bus

error exception Address error exception

MIPS R4000 Microprocessor User's Manual

A-99

Appendix A

LWCz

Load Word To Coprocessor

LWCz

31 26 25 21 20 16 15 0
LWCz base rt offset
1100xx*
6 5 5 16
Format:

LWCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The processor reads a word from

the addressed memory location, and makes the data available to

coprocessor unit z.

The manner in which each coprocessor uses the data is defined by the

an address error exception occurs.

individual coprocessor specifications.

If either of the two least-significant bits of the effective address is non-zero,

This instruction is not valid for use with CPO.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

A-100

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LW C 7 Load Wo(r((:jol'gn%gg ;ocessor LW C 7

Operation:

32 T

64 T

vAddr — ((offset;5)° || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpsze.1 3 || (PAddr, o xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigendianCPU || Oé)

COPzLW (byte, rt, mem)

VAddr — ((offset;5)*® || offset;s o) + GPR[base}

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpsze.1 3 || (PAddr, o xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigEndianCPU || Oé)

COPzLW (byte, rt, mem)

Exceptions:

TLB refill exception TLB invalid exception
Bus error exception Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

LWCz sBit#31 30 29 28 27 26 0
tweal 1)1 0| O 0 1
Bit#31 30 29 28 27 26 0
o _/
Opcode Coprocessor Unit Number
MIPS R4000 Microprocessor User's Manual A-101

Appendix A

WL Load Word Left L WL
31 26 25 21 20 16 15 0
LWL base rt offset
100010
6 5 5 16
Format:

LWL rt, offset(base)

Description:

This instruction can be used in combination with the LWR instruction to

load a register with four consecutive bytes from memory, when the bytes
cross aword boundary. LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of

the register with the appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the word in memory which
contains the specified starting byte. From one to four bytes will be loaded,
depending on the starting byte specified. In 64-bit mode, the loaded word
is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte
into the high-order (left-most) byte of the register; then it loads bytes from
memory into the register until it reaches the low-order byte of the word in
memory. The least-significant (right-most) byte(s) of the register will not
be changed.

memory
(big-endian) register
catoss [L 5[0 111 e (Al 8] ¢l 5] s
LWL $24,1($0)
ater | 1| 2] 3] D | $24
A-102 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LWL

Load Word Left LW L

(continued)

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWL (or LWR)
instruction which also specifies register rt. No address exceptions due to
alignment are possible.

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze_1 3 || (PAddr, o xor ReverseEndian®)
if BigEndianMem = 0 then

pAddr — pAddrpsze_y. 2 || 07

endif
byte — vAddr, o xor BigEndianCPU?
word ~ vAddr, xor BigEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)
temp — MeMszo«yord+ghyte+7...32*word || GPRIMl23.gxpyte...0
GPR]rt] ~ temp

64 T: VAddr — ((offset;5)*® || offset;s_o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1. 3 || (PAddr, o xor ReverseEndian®)
if BigEndianMem = 0 then
pAddr — pAddrpgze—y. 2 Il 0°
endif
byte — vAddr, o xor BigEndianCPU?
word ~ vAddr, xor BigEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)

temp — mMemMgzasyord+grbyte+7...32*word || GPRIM23.84yte...0
GPR][rt] — (temps;)3? || temp

MIPS R4000 Microprocessor User's Manual A-103

Appendix A

Load Word Left
LWI— (continued) I—WI—

Given a doubleword in a register and a doubleword in memory, the
operation of LWL is as follows:

LWL
Register A B C D E F G H
Memory I J K L M N O P
BigEndianCPU =0 BigEndianCPU = 1
VAddr 5 g destination type offset destination type offset
LEM BEM LEM BEM
0 SSSSPFGH| O 0 7 |SSSSI JKL| 3 4 0
1 SSSSOPGH| 1 0 6 |[SSSSJKLH 2 4 1
2 SSSSNOPH| 2 0 5 |SSSSKLGH| 1 4 2
3 SSSSMNOP| 3 0 4 |[SSSSLFGH| O 4 3
4 SSSSLFGH| O 4 3 |SSSSMNOP| 3 0o 4
5 SSSSKLGH| 1 4 2 |SSSSNOPH 2 0 5
6 SSSSJKLH 2 4 1 |[SSSSOPGH| 1 0 6
7 SSSSI JKL| 3 4 0 |SSSSPFGH| O 0o 7
LEM Little-endian memory (BigEndianMem = 0)
BEM BigendianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr,_,sent to memory
S sign-extend of destinations;
Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

A-104 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LWR

Load Word Right LWR

31 26 25 21 20 16 15 0
LWR base rt offset
100110
6 5 5 16
Format:

LWR rt, offset(base)

Description:

This instruction can be used in combination with the LWL instruction to

load a register with four consecutive bytes from memory, when the bytes
cross a word boundary. LWR loads the right portion of the register with
the appropriate part of the low-order word; LWL loads the left portion of
the register with the appropriate part of the high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the word in memory which
contains the specified starting byte. From one to four bytes will be loaded,
depending on the starting byte specified. In 64-bit mode, if bit 31 of the
destination register is loaded, then the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte
into the low-order (right-most) byte of the register; then it loads bytes from
memory into the register until it reaches the high-order byte of the word
in memory. The most significant (left-most) byte(s) of the register will not
be changed.

memory

(big-endian) register

address 4

5 6 7

before\ A\ B\ C\ D\$24

address 0

4|
o\ 1| 2| 3

LWR $24,4($0)

ater | A| B| c| 4]

MIPS R4000 Microprocessor User's Manual A-105

Appendix A

LWR oad o S LWR

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWR (or LWL)
instruction which also specifies register rt. No address exceptions due to
alignment are possible.

Operation:
32 T: VAddr — ((offset;5)'8 || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1. 3 || (PAddr, o xor ReverseEndian®)
if BigEndianMem = 1 then
 pAddr — pAddrpgize_31. 3l 0°
endif
byte — vAddr, o xor BigEndianCPU?
word ~ vAddr, xor BigeEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)
temp — GPRIrt]31. 32-g*byte |l MEM314324w0rd...324word+8*byte
GPRJrt] « temp
64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1. 3 || (PAddr,_ o xor ReverseEndiand)
if BigEndianMem = 1 then
 pAddr — pAddrpgize_31. 3|l 0°
endif
byte — vAddr, o xor BigEndianCPU?
word ~ vAddr, xor BigeEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)
temp — GPRIrt]31. 32-g*byte Il MEM314324w0rd...324word+8*byte
GPR[rt] — (temp3;)3? || temp
A-106 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LWR

Load Word Right

(continued)

LWR

Given a word in a register and a word in memory, the operation of LWR

is as follows:
LWR
Register | A | B CcC| D E | F G| H
Memory | J K L M N o P
BigendianCPU =0 BigEndianCPU =1
VAddr 5 4 destination type offset destination type offset
LEM BEM LEM BEM
0 SSSSMNOP| O 0 4 [XXXXEFGI 0 7 0
1 XXXXEMNO| 1 1 4 XX XXEFI J 1 6 0
2 XXXXEFMN| 2 2 4 | XXXXEIJK| 2 5 0
3 XXXXEFGM 3 3 4 |SSSSIJKL| 3 4 0
4 SSSSI JKL| O 4 0 XX XXEFGM O 3 4
5 XXXXEI JK| 1 5 0 | XXXXEFMN| 1 2 4
6 XXXXEFI J] 2 6 0 | XX XXEMNO| 2 1 4
7 XXX XEFGI 3 7 0 SSSSMNOP| 3 0 4
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr, o sent to memory
S sign-extend of destinations;
X either unchanged or sign-extend of destinations;
Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual

A-107

Appendix A

WU Load Word Unsigned LWU
31 26 25 21 20 16 15 0
LWuU base rt offset
100111
6 5 5 16
Format:

LWU rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general

register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero,

an address error exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigEndianCPU || 02)

GPRIr] ~ 032 || memsy.gepyte.. 8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

A-108

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Move From
M FCO System Cont\r/ol Coprocessor M FCO

31 26 25 21 20 16 15 11 10 0
COPO MF rt rd 0
010000 | 000O0O 000 0000 00O0O
6 5 5 5 11

Format:
MFCO rt, rd

Description:
The contents of coprocessor register rd of the CP0 are loaded into general
register rt.

Operation:

32 T: data -« CPR[O,rd]
T+1: GPR][rt] ~ data

64 T: data — CPR[O,rd]
T+1: GPR[rt] (datag;)®? || datag; g

Exceptions:
Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual A-109

Appendix A

MFCz Move From Coprocessor MFCz

31 26 25 21 20 16 15 11 10 0
COPz MF rt rd 0
0100xx* 00000 000 0000 OOOO
6 5 5 5 11
Format:
MFCz rt, rd
Description:

The contents of coprocessor register rd of coprocessor z are loaded into
general register rt.

Operation:

32 T: data « CPR[z,rd]
T+1: GPR][rt] « data
64 T: if rdg = 0 then
data «— CPR(z,rdy 1| 0l31..0
else
data — CPR(z,rdy ;|| Olss...32
endif
T+1: GPR[r] — (datag;)®? || data

Exceptions:

Coprocessor unusable exception

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

A-110 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MFCz

Opcode Bit Encoding:

Move From Coprocessor
(continued)

MFCz

MFCZ Bit#31 30 29

28 27 26 25 24 23 22 21 0
Mrcol 0 | 1 0|0 0 0 0| O 0| O 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
mMec1| 0 | 1 0| O 0 1 0| O 0] O 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
MEc2| O | 1 0| o0 1 0 0| O 0| O 0
o _
Y \/]
Opcode ‘ Coprocessor Suboperation
Coprocessor Unit Number

MIPS R4000 Microprocessor User's Manual

A-111

Appendix A

MFHI

Move From HI M FH'

31 26 25 16 15 1110 6 5 0
SPECIAL 0 rd 0 MFHI
000000 |[0OOO0O0O0OOCOOO 00000 010000
6 10 5 5 6
Format:
MFHI rd
Description:
The contents of special register HI are loaded into general register rd.
To ensure proper operation in the event of interruptions, the two
instructions which follow a MFHI instruction may not be any of the
instructions which modify the HI register: MULT, MULTU, DIV, DIVU,
MTHI, DMULT, DMULTU, DDIV, DDIVU.
Operation:
32,64 T: GPR[rd] « HI
Exceptions:
None
A-112

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MFLO

Move From Lo M FLO

31 26 25 16 15 1110 6 5 0
SPECIAL 0 rd 0 MFLO
000000 |00 0000O0O0OO0QO0O 00000 010010
6 10 5 5 6
Format:
MFLO rd
Description:
The contents of special register LO are loaded into general register rd.
To ensure proper operation in the event of interruptions, the two
instructions which follow a MFLO instruction may not be any of the
instructions which modify the LO register: MULT, MULTU, DIV, DIVU,
MTLO, DMULT, DMULTU, DDIV, DDIVU.
Operation:
32,64 T: GPRJrd] « LO
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-113

Appendix A

MTCO

Move To

System Control Coprocessor

MTCO

31 26 25 21 20 16 15 1110 0
COPO MT rt rd 0
010000 00100 000 0000 0000
6 5 5 5 11
Format:
MTCO rt, rd
Description:
The contents of general register rt are loaded into coprocessor register rd
of CPO.
Because the state of the virtual address translation system may be altered
by this instruction, the operation of load instructions, store instructions,
and TLB operations immediately prior to and after this instruction are
undefined.
Operation:
32,64 T data — GPR]r]
T+1: CPR[0,rd] ~ data
Exceptions:
Coprocessor unusable exception
A-114 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MTCz Move To Coprocessor MTCz
3T 0

26 25 21 20 16 15 11 10
COPz MT rt rd 0
0100xx* 00100 000 0000 00O0O
6 5 5 5 11
Format:
MTCz rt, rd
Description:

The contents of general register rt are loaded into coprocessor register rd
of coprocessor z.

Operation:

32 T:. data « GPRJr]
T+1: CPR[z,rd] ~ data

64 T: data — GPR[rt]3; o

T+1: ifrdg =0
CPR[z,rdy4 11/ 0] — CPRI[z, rdy_1 || Oles.. 32 || data
else
CPR[Z,I’d4m1 ” O] ~ data || CPR[Z,rd4”_l ” 0]31”_0
endif
Exceptions:

Coprocessor unusable exception

*Opcode Bit Encoding:

MTCZ Bit#31 30 29 28 27 26 25 24 23 22 21 0
copo| O | 1 0| O 0 0 0|0 1|0 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
cop1| O | 1 0| O 0 1 0O 110 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
cop2| O |1 0| O 1 0 0|0 1|0 0
o _
\/] '
Opcode Coprocessor Unit Number Coprocessor Suboperation

MIPS R4000 Microprocessor User's Manual A-115

Appendix A

MTHI Move To Hl

MTHI

31 26 25 21 20 65 0
SPECIAL rs 0 MTHI
000000 000 00000O0OOOOOOO 010001
6 5 15 6
Format:
MTHI rs
Description:

The contents of general register rs are loaded into special register HI.

If a MTHI operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register LO are undefined.

Operation:
32,64 T-2: HI « undefined
T-1: HI « undefined
T: HI < GPRJrs]
Exceptions:
None

A-116

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MTLO Move To LO MTLO

31 26 25 2120 65 0
SPECIAL rs 0 MTLO
000000 000000000000000O 010011
6 5 15 6
Format:
MTLO rs
Description:

The contents of general register rs are loaded into special register LO.

If a MTLO operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register HI are undefined.

Operation:
32,64 T-2: LO ~ undefined
T-1: LO ~ undefined
T: LO < GPRJrs]
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-117

Appendix A

MULT Multiply MULT
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULT
000000 000000 00O0O 011000
6 5 5 10 6
Format:
MULT rs, rt
Description:
The contents of general registers rs and rt are multiplied, treating both
operands as 32-bit 2’'s complement values. No integer overflow exception
occurs under any circumstances. In 64-bit mode, the operands must be
valid 32-bit, sign-extended values.
When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.
If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.
A-118 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MULT

Multiply

(continued)

MULT

Operation:
32 T-2: LO « undefined
HI « undefined
T-1: LO ~ undefined
HI « undefined
T t « GPRJrs] * GPRJrt]
HI — 163..32
64 T-2: LO « undefined
HI ~ undefined
T-1: LO « undefined
HI « undefined
T: t — GPR[I’S]31.“0 * GPR[rt]31m0
LO - (tgl)zz Il ta1..0
HI « (t63)° [l t63...32
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-119

Appendix A

MULT

U

Multiply Unsigned

MULTU

31 26 25 21 20 16 15 5
SPECIAL rs rt 0 MULTU
000000 00 0000O0O0O0O 011001
6 5 5 10 6
Format:
MULTU rs, rt
Description:

The contents of general register rs and the contents of general register rt
are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances. In 64-bit mode, the operands

must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is

loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating

reads of HI or LO from writes by a minimum of two instructions.

A-120

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MULTU

Multiply Unsigned
(continued) M U LTU

Operation:
32 T-2: LO — undefined
HI « undefined
T-1: LO ~ undefined
HI ~ undefined
T t < (0]] GPR]rs]) * (0 || GPRIrt])
LO ~131.0
HI — l63..32
64 T-2: LO « undefined
HI « undefined
T-1: LO ~ undefined
HI « undefined
T t < (0 ||362PR[fS]31...0) * (0|l GPRrt]31..0)
LO - ('f31)32 [t31...0
HI < (t63)° Il t63..32
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-121

Appendix A

NOR Nor NOR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format:
NOR rd, rs, rt
Description:

The contents of general register rs are combined with the contents of
general register rtin a bit-wise logical NOR operation. The resultis placed
into general register rd.

Operation:

32,64 T: GPR[rd] « GPRJrs] nor GPR]rt]

Exceptions:

None

A-122 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

OR Or OR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 OR
000000 00000 100101
6 5 5 5 5 6
Format:
ORrd,rs, rt
Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical OR operation. The result is placed
into general register rd.

Operation:

32,64 T: GPR[rd] —~ GPR][rs] or GPR]rt]

Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-123

Appendix A

OR| Or Immediate

ORI

31 26 25 21 20 16 15 0
ORI rs rt immediate
001101
6 5 5 16
Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical OR operation. The result is placed

into general register rt.

Operation:

32 T. GPR[rt] « GPRIrs]3;. 16 || (immediate or GPRIrs]5.)
64 T. GPR[rt] « GPRIrs]gs.. 16 || (immediate or GPRIrs]5._ o)

Exceptions:
None

A-124 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SB Store Byte SB

31 26 25 21 20 16 15 0
SB base rt offset
101000
6 5 5 16
Format:

SB rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The least-significant byte of register
rt is stored at the effective address.

Operation:

32 T: VAddr — ((offset;s)1® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vVAddr, DATA)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor ReverseEndian®)
byte — vAddr, o xor BigEndianCPU3
data — GPRIMle3 g+byte..o Il 0%
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze.1 3 || (PAddr, o xor ReverseEndian®)
byte — vAddr, o xor BigEndianCPU3
data — GPR[rtls3_grnyte...0 || 05
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual A-125

Appendix A

SC Store Conditional SC
31 26 25 21 20 16 15 0
SC base rt offset
111000

6 5 5 16

Format:

SC rt, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

If any other processor or device has modified the physical address since
the time of the previous Load Linked instruction, or if an ERET instruction
occurs between the Load Linked instruction and this store instruction, the
store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is indicated
by the contents of general register rt after execution of the instruction. A
successful store sets the contents of general register rt to 1; an unsuccessful
store sets it to 0.

The operation of Store Conditional is undefined when the address is
different from the address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CPO to be
enabled.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

A-126

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Store Conditional
SC (continued) SC

Operation:

32 T: VAddr — ((offset;5)'®|| offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze-1. 3 || (PAddry g xor (ReverseEndian || 0?))
data « GPR[rtgz.g+yte. o | 05
if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] — 0% || LLbit

64 T: VAddr — ((offset;5)*®|| offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 0?))
data GPRIrtlgg.g+pyte...o Il 05
if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] — 053] LLbit

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual A-127

Appendix A

SCD Store Conditional Doubleword SCD
31 26 25 21 20 16 15 0

SCD base rt offset

111100

6 5 5 16
Format:
SCD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

If any other processor or device has modified the physical address since
the time of the previous Load Linked Doubleword instruction, or if an
ERET instruction occurs between the Load Linked Doubleword
instruction and this store instruction, the store fails and is inhibited from
taking place.

The success or failure of the store operation (as defined above) is indicated
by the contents of general register rt after execution of the instruction. A
successful store sets the contents of general register rt to 1; an unsuccessful
store sets it to 0.

The operation of Store Conditional Doubleword is undefined when the
address is different from the address used in the last Load Linked
Doubleword.

This instruction is available in User mode; it is not necessary for CPO to be
enabled.

If either of the three least-significant bits of the effective address is non-
zero, an address error exception takes place.

A-128

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SCD

Store Conditi onal Doubleword
(continued) SCD

If this instruction should both fail and take an exception, the exception
takes precedence.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64

T:

VAddr ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vVAddr, DATA)
data — GPR]rt]
if LLbit then
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] — 093] LLbit

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-129

Appendix A

SD Store Doubleword SD
31 26 25 21 20 16 15 0
SD base rt offset
111111
6 5 5 16
Format:
SD rt, offset(base)
Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.
If either of the three least-significant bits of the effective address are non-
zero, an address error exception occurs.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)

data — GPRJrt]
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit user mode
R4000 in 32-bit supervisor mode)

A-130

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SDCz

Store Doubleword S DCZ

From Coprocessor

31

26 25 21 20 16 15 0

SDCz
1111xx*

base rt offset

6

Format

SDCz rt, offset(base)

Description:

Operat

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a
doubleword, which the processor writes to the addressed memory
location. The data to be stored is defined by individual coprocessor
specifications.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This instruction is not valid for use with CPO.

This instruction is undefined when the least-significant bit of the rt field is
non-zero.

ion:

32

64

T: VAddr ((offset;5)'8 || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
data - COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

T: VAddr ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
data — COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

*See the table, “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-131

Appendix A

SDCz

Exceptions:

Store Doubleword
From Coprocessor
(continued)

TLB refill exception
TLB invalid exception

TLB modification exception

Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

SDCz

SDCZ gis31 30 20 28 27 26 0
sper| L] 1]t 1]o 1
Bit#31 30 29 28 27 26 0
e A A A
\ /H/_/
—~
SD opcode Coprocessor Unit Number

A-132

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SDL

Store Doubleword Left S D |_

31 26 25 21 20 16 15 0

SDL
101100

base rt offset

6

Format:

SDL rt, offset(base)

Description:

This instruction can be used with the SDR instruction to store the contents
of a register into eight consecutive bytes of memory, when the bytes cross
adoubleword boundary. SDL stores the left portion of the register into the
appropriate part of the high-order doubleword of memory; SDR stores the
right portion of the register into the appropriate part of the low-order
doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. Italters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(big-endian)

address 8 | 8

register
9 110|11|12|13|14|15

address0 | O

112345 6] 7|0 |A[B[c|[D|E[F[G|H]|s24

SDL $24,1($0)

address8 | 8 | 9 | 10| 11|12|13|14]15

address0 |0 | B| C| D|E|F| G| H

after

MIPS R4000 Micro

processor User's Manual A-133

Appendix A

SDL

Store Doubleword Left
(continued) S D L

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64

T:

vAddr — ((offset;5)*® || offset ;5 o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze 1 3 || (PAddr, o xor ReverseEndiand)
If BigEndianMem = 0 then

pAddr « pAddrg; 5]l 03
endif
byte — vAddr, o xor BigEndianCPU3
data — 0°¥"'® || GPRIrtlg3_ 56-gbyte
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

A-134

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SDL

Store Doubleword Left
(continued)

SDL

Given a doubleword in a register and a doubleword in memory, the
operation of SDL is as follows:

SDL
Register | A | B | C| D | E| F | G| H

Memory I J K L M N @) P
BigEndianCPU =0 BigEndianCPU =1
offset offset
VAddr , destination type | EM BEM destination type | LEM BEM
0 I JKLMNOA| O 0 7 |ABCDEFGH]| 7 0 O
1 I JKLMNAB| 1 0O 6 || ABCDEF G| 6 0 1
2 I JKLMABC| 2 0O 5|1 JABCDEF | 5 0o 2
3 I JKLABCD| 3 0 4 ||l JKABCDE| 4 0o 3
4 | JKABCDE]| 4 0 3 |l JKLABCD]| 3 0 4
5 I JABCDEF| 5 0 2 (I JKLMABC| 2 0 5
6 | ABCDEFG| 6 0 1 (I JKLMNAB]|1 0 6
7 ABCDEFGH| 7 0O 0 |[I JKLMNOA|O 0o 7
LEM Little-endian memory (BigEndianMem = 0)
BEM BigendianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr, o sent to memory
Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-135

Appendix A

SDR Store Doubleword Right SDR
31 26 25 21 20 16 15 0

SDR base rt offset

101101

6 5 5 16
Format:
SDR rt, offset(base)

Description:

This instruction can be used with the SDL instruction to store the contents
of a register into eight consecutive bytes of memory, when the bytes cross
aboundary between two doublewords. SDR stores the right portion of the
register into the appropriate part of the low-order doubleword; SDL stores
the left portion of the register into the appropriate part of the low-order
doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. Italters only the word in memory which contains that byte.
From one to eight bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then it copies bytes
from register to memory until it reaches the high-order byte of the word in
memory. No address exceptions due to alignment are possible.

memory

(big-endian) register

address8 | g | 9 |10|11|12|13| 14|15

addressO | o |1 |2|3|/4|5|6]|7

vefore [A|B[C[D]E[F[G[H] $24

memory SDR $24,4(%$0
(big-endian) $ ($0)
address8| g8 | 9 |10[11|12(13/14|15| after
addressO | E |F |G| H|4|5|6| 7
A-136 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SDR Store Doubleword Right SDR

(continued)

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: vAddr — ((offset;5)*|| offset ;5 o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze _1 3|l (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then

pAddr — pAddrpgze 3131 03

endif
byte — vAddr; o xor BigEndianCPU?®

data — GPR[It]s3_gspyte I| 05
StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-137

Appendix A

SDR

Store Doubleword Right

(continued)

SDR

Given a doubleword in a register and a doubleword in memory, the

operation of SDR is as follows:

SDR
Register | A | B | C | D | E| F | G| H
Memory I J K L M N o P
BigEndianCPU =0 BigEndianCPU =1
o offset offset
VAddr 5 o destination vPe [v BEM destination vPe [Em BEM
0 ABCDEFGH| 7 0 0 |HJKLMNOP| O 7 0
1 BCDEFGHP| 6 1 0 [GHKLMNOP| 1 6 O
2 CDEFGHOP| 5 2 0 FGHL MNOP| 2 5 0
3 DEFGHNOP| 4 3 0 |EFGHMNOP| 3 4 0
4 EFGHMNOP| 3 4 0 DEFGHNOP| 4 3 0
5 FGHLMNOP| 2 5 0 CDEFGHOP| 5 2 0
6 GHKLMNOP| 1 6 0 |[BCDEFGHP| 6 1 0
7 HJKLMNOP| O 7 0 |ABCDEFGH| 7 0O O
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr,_,sent to memory
Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)
A-138 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SH

Store Halfword SH

31 26 25 21 20 16 15 0

SH
101001

base rt offset

6

Format:

SH rt, offset(base)
Description:

The

16-bit offset is sign-extended and added to the contents of general

register base to form an unsigned effective address. The least-significant
halfword of register rt is stored at the effective address. If the least-

sign

ificant bit of the effective address is non-zero, an address error

exception occurs.

Operation:

32 T

64 T

vAddr — ((offset;5)'® || offset;s o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrps;zg.1 3 || (PAddr, o xor (ReverseEndian? || 0))
byte — vAddr, o xor (BigEndianCPU? || 0)

data — GPRIMlg3_gwyte..0 Il 04"

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)
vAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze.1. 3 || (PAddr, g xor (ReverseEndian? || 0))
byte — vAddr, o xor (BigEndianCPU? || 0)

data — GPRI[tls3_grnyte...0 || 0¥

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception

Bus

error exception

Address error exception

MIPS R4000 Microprocessor User's Manual A-139

Appendix A

SLL Shift Left Logical SLL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SLL
000000 00000 000000
6 5 5 5 5 6
Format:
SLL rd, rt, sa
Description:

The contents of general register rt are shifted left by sa bits, inserting zeros
into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign extended when placed in the
destination register. It is sign extended for all shift amounts, including
zero; SLL with a zero shift amount truncates a 64-bit value to 32 bits and
then sign extends this 32-bit value. SLL, unlike nearly all other word
operations, does not require an operand to be a properly sign-extended
word value to produce a valid sign-extended word result.

NOTE: SLL with a shift amount of zero may be treated as a NOP by
some assemblers, at some optimization levels. If using SLL with a
zero shift to truncate 64-bit values, check the assembler you are using.

Operation:
32 T: GPR[rd] « GPR]rt]3;_g5 o] 05

64 T: s—0]lsa
temp — GPRIrtl31.s. o || 0°
GPRI[rd] — (tempz;)3? || temp

Exceptions:
None

A-140 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SLLV Shift Left Logical Variable SLLV
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLLV
000000 00000 000100
6 5 5 5 5 6
Format:
SLLV rd, rt, rs
Description:
The contents of general register rt are shifted left the number of bits
specified by the low-order five bits contained in general register rs,
inserting zeros into the low-order bits.
The result is placed in register rd.
In 64-bit mode, the 32-bit result is sign extended when placed in the
destination register. It is sign extended for all shift amounts, including
zero; SLLV with a zero shift amount truncates a 64-bit value to 32 bits and
then sign extends this 32-bit value. SLLV, unlike nearly all other word
operations, does not require an operand to be a properly sign-extended
word value to produce a valid sign-extended word result.
NOTE: SLLV with a shift amount of zero may be treated as a NOP by
some assemblers, at some optimization levels. If using SLLV with a
zero shift to truncate 64-bit values, check the assembler you are using.
Operation:
32 T: S « GP[rS]4_“0
GPRUm«-GPRUﬂ@LQMOHOS
64 T: s < O0]|GP[rsly g
temp -~ GPR[rt](31_s)_”O || 0s
GPRI[rd] — (tempz;)3? || temp
Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-141

Appendix A

SLT Set On Less Than SLT
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLT
000000 00000 101010
6 5 5 5 5 6
Format:
SLT rd, rs, rt
Description:
The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.
The result is placed into general register rd.
No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.
Operation:
32 T: if GPR[rs] < GPR]rt] then
GPR[rd] — 0311
else
GPRJ[rd] — 032
endif
64 T: if GPR[rs] < GPR[rt] then
GPR[rd] — 0831
else
GPR[rd] — 054
endif
Exceptions:
None
A-142 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

S LT| Set On Less Than Immediate SLT|

31 26 25 21 20 16 15 0
SLTI rs rt immediate
001010
6 5 5 16
Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of
general register rs. Considering both quantities as signed integers, if rs is
less than the sign-extended immediate, the result is set to one; otherwise
the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

32 T: if GPR[rs] < (immediate;5)® || immediate;5 then
GPRI[rd] — 0311
else
GPR][rd] — 0%2
endif

64 T: if GPR[rs] < (immediate;5)*® || immediate;s_g then
GPR[rd] — 0831
else
GPR[rd] — 084
endif

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-143

Appendix A

SLTIU

Set On Less Than
Immediate Unsigned

SLTIU

31 26 25 21 20 16 15 0
SLTIU rs rt immediate
001011
6 5 5 16
Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of
general register rs. Considering both quantities as unsigned integers, if rs
is less than the sign-extended immediate, the result is set to one; otherwise

the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison

overflows.
Operation:
32 T if(0] GPRIrs]) < (immediate;5)*® || immediate;s o then
GPR[rd] — 0311
else
GPR[rd] ~ 0%2
endif
64 T: if (0] GPRIrs]) < (immediate;5)* || immediate;s o then
GPR[rd] — 0831
else
GPR[rd] — 084
endif
Exceptions:
None

A-144

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

S I_TU Set On Less Than Unsigned S LTU
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLTU
000000 00000 | 101011
6 5 5 5 5 6

Format:

SLTUrd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:
32 T: if (0] GPR[rs]) <0 || GPR[rt] then
GPR[rd] — 0311
else
GPRJ[rd] — 032
endif
64 T: if (0| GPRIrs]) < 0 || GPR]rt] then
GPR[rd] — 0831
else
GPR[rd] — 084
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-145

Appendix A

SRA Shift Right Arithmetic SRA

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRA
000000 00000 000011
6 5 5 5 5 6

Format:
SRA rd, rt, sa
Description:

The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: GPR[rd] « (GPRIrt]31)%? || GPRI[rt] 31 _sa

64 T: s—0]sa
temp — (GPRrtl3;)® || GPRIrt] 31 ¢
GPRI[rd] — (tempgz;)®? || temp

Exceptions:

None

A-146 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

S RAV Arithﬁwr(]eigc I?/igrri]at\ble S RAV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRAV
000000 00000 000111
6 5 5 5 5 6

Format:

SRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits
specified by the low-order five bits of general register rs, sign-extending
the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: s < GPR[rs]4. 9
GPRIrd] — (GPRIrt]31)° || GPRIrt]a1..

64 T: s« GPR[rsl4 o
temp — (GPRIrt]31)® || GPRI[rt]3; s
GPRI[rd] - (tempgz;)3? || temp

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-147

Appendix A

SRL Shift Right Logical SRL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRL
ooo0o00O0 00000 000010
6 5 5 5 5 6

Format:
SRL rd, rt, sa
Description:

The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: GPR[rd] « 0% || GPR[rtl31. sa

64 T: s~0]sa
temp — 0% || GPR{rt]3; ¢
GPRIrd] — (tempg;)3? || temp

Exceptions:
None

A-148 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SRLV

Shift Right Logical Variable

SRLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRLV
000000 00000 000110
6 5 5 5 5 6
Format:
SRLV rd, rt, rs
Description:
The contents of general register rt are shifted right by the number of bits
specified by the low-order five bits of general register rs, inserting zeros
into the high-order bits.
The result is placed in register rd.
In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.
Operation:
32 T: s < GPR[rsls. o
GPR[rd] « 0° || GPR[rtl3; <
64 T:. s~ GPR[rs]s g
temp — 0% || GPR[rtl3; ¢
GPR([rd] — (temp3;)3? || temp
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-149

Appendix A

SUB Subtract SUB
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SUB
000000 00000 100010
6 5 5 5 5 6
Format:
SUBrd, rs, rt
Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd. In 64-bit mode, the operands must be valid sign-extended, 32-
bit values.
The only difference between this instruction and the SUBU instruction is
that SUBU never traps on overflow.
An integer overflow exception takes place if the carries out of bits 30 and
31 differ (2’s complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.
Operation:
32 T: GPR[rd] — GPR[rs] — GPR]rt]
64 T:. temp — GPR]rs]- GPR]rt]
GPRIrd] « (tempz1)* || tempa;_o
Exceptions:
Integer overflow exception
A-150 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SUBU

Subtract Unsigned SU BU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SuBU
000000 00000 100011

6 5 5 5 5 6

Format:
SUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result.
The result is placed into general register rd.
In 64-bit mode, the operands must be valid sign-extended, 32-bit values.
The only difference between this instruction and the SUB instruction is
that SUBU never traps on overflow. No integer overflow exception occurs
under any circumstances.

Operation:

32 T: GPR[rd] — GPR[rs] — GPR]rt]

64 T:. temp « GPR[rs]- GPRIrt]

GPRIrd] — (tempay)* || tempa; o

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-151

Appendix A

S\W Store Word S\W

31 26 25 21 20 16 15 0
SwW base rt offset
101011
6 5 5 16
Format:

SW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

Operation:

32 T: VAddr — ((offset;5)t® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%)
byte — vAddr, o xor (BigEndianCPU || 0%)
data — GPRI[rtls3.geyte || 05
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
64 T: VvAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;zg.1 3 || (PAddr, o xor (ReverseEndian || 0%)
byte — vAddr, o xor (BigEndianCPU || 0%)
data — GPRI[rtls3.geyte || 05
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:
TLB refill exception TLB invalid exception
TLB modification exception Bus error exception

Address error exception

A-152 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SWCZ Store Word From Coprocessor SWCZ

31 26 25 21 20 16 15 0
SWCz base rt offset
1110xx*
6 5 5 16
Format:
SWCz rt, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a word,
which the processor writes to the addressed memory location.

The data to be stored is defined by individual coprocessor specifications.
This instruction is not valid for use with CPO.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

Operation:

32 T: vAddr — ((offset;5)'8 Il offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%)
byte — vAddr, o xor (BigEndianCPU || 0%)
data — COPzSW (byte, rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vVAddr, DATA)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%)
byte — vAddr, o xor (BigEndianCPU || 0%)
data — COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-153

Appendix A

SWCz

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

Store Word From Coprocessor
(Continued) SWCz

SWCzZ Bit#31 30 29 28 27 26

0
sweil 11|10)0 |1
Bit#31 30 29 28 27 26 0
swee| 111010

. —~ /H/—J

SW opcode Coprocessor Unit Number

A-154

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SWL

31 26 25 21 20 16 15

Store Word Left SWL
0

SWL
101010

base rt offset

6

Format:

SWL rt, offset(base)

Description:

This instruction can be used with the SWR instruction to store the contents
of a register into four consecutive bytes of memory, when the bytes cross
aword boundary. SWL stores the left portion of the register into the
appropriate part of the high-order word of memory; SWR stores the right
portion of the register into the appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. Italters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory

(big-endian) register

address 4

4 5 6 7

address 0

0 1 2 before ‘ A‘ B‘ C‘ D‘$24

w

SWL $24,1($0)

address 4

|

address 0

after

-
o] A|] B| c|

MIPS R4000 Microprocessor User's Manual A-155

Appendix A

Store Word Left
SWL (Continued) SWL

Operation:

32 T: VAddr — ((offset;5)® || offset ;5 o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpg;ze 1 3 || (PAddr, o xor ReverseEndian3)
If BigEndianMem = 0 then
pAddr — pAddrs; » || 02
endif
byte — vAddr, o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
data 032]| 028" || GPRIrtl3; o4 grnyte
else
data — 02*8PYe || GPRIrtl3; o4.gwnyte I 0%
endif
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*8 || offset ;5 o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze _1 3|l (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrg; 5 || 0°
endif
byte — vAddr; o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
data — 032 || 0248DY!® || GPRIrtl3; 24.g+hyte
else
data — 0248PY® || GPRIrtl3; o4.gwnyte I 0%
endif
StoreMemory(uncached, byte, data, pAddr, vAddr, DATA)

A-156 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SWL

Store Word Left
(Continued)

SWL

Given a doubleword in a register and a doubleword in memory, the
operation of SWL is as follows:

SWL
Register | A | B C| Db | E|F| G|H
Memory I J K L M N @] P
BigEndianCPU =0 BigEndianCPU =1
offset offset
vAddr 5 o destination type LEM BEM destination type | | EM BEM
0 I JKLMNOE| O 0 7 |[EFGHMNOP| 3 4 0
1 I JKLMNEF| 1 0O 6 [| EFGMNOP| 2 4 1
2 I JKLMEFG| 2 0 5 I JEFMNOP| 1 4 2
3 I JKLEFGH| 3 0O 4 |1 JKEMNOP| O 4 3
4 I JKEMNOP| O 4 3 |I J KLEFGH| 3 0 4
5 I JEFMNOP| 1 4 2 I J KLMEF G| 2 0 5
6 I EFGMNOP| 2 4 1 |1 J KLMNEF| 1 0 6
7 EFGHMNOP| 3 4 0 |I JKLMNOE| O o 7
LEM Little-endian memory (BigEndianMem = 0)
BEM BigendianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr, o sent to memory
Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
MIPS R4000 Microprocessor User's Manual A-157

Appendix A

SWR

31 26 25 21 20 16 15

Store Word Right SWR
0

base rt offset

Format:

SWR rt, offset(base)

Description:

This instruction can be used with the SWL instruction to store the contents
of a register into four consecutive bytes of memory, when the bytes cross
a boundary between two words. SWR stores the right portion of the
register into the appropriate part of the low-order word; SWL stores the
left portion of the register into the appropriate part of the low-order word
of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. Italters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then copies bytes
from register to memory until it reaches the high-order byte of the word in
memory.

No address exceptions due to alignment are possible.

memory

(big-endian) register

address 4

4 5 6 7

address 0

before \A\B\C\D\$24

0 1 2 3

SWR $24,1($0)

address 4

address 0

3 after

A-158

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Store Word Right
SWR (Continued) SWR

Operation:

32 T: VAddr — ((offset;5) || offset 15_o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps;zg 1 3 || (PAddr, o xor ReverseEndian3)
If BigEndianMem = 0 then
pAddr — pAddrs; , || 02
endif
byte — vAddr, o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
data — 0%2 || GPRIrt]3_grpyte. .o I| 05
else
data — GPR[rtl31-gyte. .0 || 08 || 032
endif
Storememory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*8 || offset 15_o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps;zg 1 3 || (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrs; » || 02
endif
byte — vAddr; o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
data — 0%2 || GPRIrt]3_grpyte. o | 05
else
data — GPR[rtl31-gyte. .0 || 08 || 032
endif
StoreMemory(uncached, WORD-byte, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-159

Appendix A

Store Word Right
SWR (Continued) SWR

Given a doubleword in a register and a doubleword in memory, the
operation of SWR is as follows:

SWR
Register A B C D E F G H
Memory | J K L M N O P
BigEndianCPU =0 BigEndianCPU =1
offset offset
VAddr ; o destination vPe [ev BEM destination tyPe [\ EM BEM
0 I JKLEFGH| 3 0 4 |HJ KLMNOP|O 7 0
1 I JKLFGHP | 2 1 4 |[GHKLMNOP |1 6 O
2 I JKLGHOP | 1 2 4 |[FGHLMNOP| 2 5 0
3 I JKLHNOP | O 3 4 |[EFGHMNOP | 3 4 0
4 EFGHMNOP| 3 4 0 | JKLHNOP]|O 3 4
5 FGHLMNOP | 2 5 0 |l JKLGHOP |1 2 4
6 GHKLMNOP| 1 6 0 |I JKLFGHP | 2 1 4
7 HJKLMNOP| O 7 0 |1l JKLEFGH| 3 0 4
LEM Little-endian memory (BigEndianMem = 0)
BEM BigendianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr,_,sent to memory
Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

A-160 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SYNC Synchronize SYNC

31 26 25 6 5 0
SPECIAL 0 SYNC
000000 0000 0000 0000 OOOO 00OO 001111
6 20
Format:
SYNC
Description:
The SYNC instruction ensures that any loads and stores fetched prior to the
present instruction are completed before any loads or stores after this
instruction are allowed to start. Use of the SYNC instruction to serialize
certain memory references may be required in a multiprocessor
environment for proper synchronization. For example:
Processor A Processor B
SW R1, DATA 1: LW R2, FLAG
LI R2,1 BEQ R2, RO, 1B
SYNC NOP
SW R2, FLAG SYNC
LW R1, DATA
The SYNC in processor A prevents DATA being written after FLAG,
which could cause processor B to read stale data. The SYNC in processor
B prevents DATA from being read before FLAG, which could likewise
result in reading stale data. For processors which only execute loads and
stores in order, with respect to shared memory, this instruction is a NOP
LL and SC instructions implicitly perform a SYNC.
This instruction is allowed in User mode.
Operation:
32,64 T: SyncOperation()
Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-161

Appendix A

SYSCALL systemcal SYSCALL

31 26 25 6 5 0
SPECIAL Code SYSCALL
000000 001100
6 20 6
Format:
SYSCALL
Description:
A system call exception occurs, immediately and unconditionally
transferring control to the exception handler.
The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.
Operation:
32,64 T: SystemCallException
Exceptions:
System Call exception
A-162 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

"EQ Trap If Equal TEQ
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TEQ
000000 110100
6 5 5 10 6

Format:
TEQ s, rt
Description:

The contents of general register rt are compared to general register rs. If
the contents of general register rs are equal to the contents of general

register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word

containing the instruction.

Operation:

32,64

T: if GPR[rs] = GPR]rt] then
TrapException
endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual

A-163

Appendix A

TEQ| Trap If Equal Immediate TEQ

31 26 25 21 20 16 15 0
REGIMM rs TEQI immediate
000001 01100
6 5 5 16
Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. If the contents of general register rs are equal to the
sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs] = (immediate;5)'° || immediate;s o then
TrapException
endif

64 T: if GPR[rs] = (immediate;5)*® || immediate;s o then
TrapException
endif

Exceptions:

Trap exception

A-164 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TGE Trap If Greater Than Or Equal TGE

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TGE
000000 110000
6 5 5 10 6

Format:
TGE rs, rt
Description:

The contents of general register rt are compared to the contents of general
register rs. Considering both quantities as signed integers, if the contents
of general register rs are greater than or equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

32,64 T: if GPR[rs] = GPR]rt] then
TrapException
endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual A-165

Appendix A

TG El Trap If Greater Than Or Equal Immediate

TGEI

31 26 25 21 20 16 15 0
REGIMM rs TGEI immediate
000001 01000
6 5 5 16
Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are greater than or equal to the sign-

extended immediate, a trap exception occurs.

Operation:
32 T: if GPR[rs] = (immediate;5)'® || immediate;s o then
TrapException
endif
64 T: if GPR[rs] = (immediate;5)*® || immediate;s o then
TrapException
endif
Exceptions:

Trap exception

A-166

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Trap If Greater Than Or Equal
TG E I U Immediate Unsigned TG EI U

31 26 25 21 20 16 15 0
REGIMM rs TGEIU immediate
000001 01001
6 5 5 16
Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:
32 T: H(O”GPRUﬂ)z«)”Gmmemmewfﬁnhnmemmeﬁm@ﬂwn
TrapException
endif
64 T: if (0] GPR[rs]) = (0 || (immediate;5)*® || immediate;5 o) then
TrapException
endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual A-167

Appendix A

TG E U Trap If Greater Than Or Equal Unsigned TG E U

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TGEU
000000 110001
6 5 5 10 6

Format:
TGEU rs, rt

Description:
The contents of general register rt are compared to the contents of general
register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.
The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

T: if (0 || GPRJrs]) = (0 || GPRJrt]) then

TrapException

endif

Exceptions:
Trap exception

A-168 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TLBP

Probe TLB For Matching Entry TLB P

31

26 25 24 6 5 0

COPO
010000

CO 0 TLBP
1 0000000 0000 0O0OC0OOCOOQOO 001000

6

1 19 6

Format:

TLBP

Description:

The Index register is loaded with the address of the TLB entry whose
contents match the contents of the EntryHi register. 1f no TLB entry
matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references
associated with the instruction immediately after a TLBP instruction, nor
is the operation specified if more than one TLB entry matches.

Operation:

32 T Index— 1| 0%%|| undefined®

64 T. Index< 1[0 25| undefined®

foriin O...TLBEntries—1
if (TLB[|]9577 = EntryHi31.._12) and (TLB[|]76 or
(TLBIi]71...64 = EntryHiz_ o)) then
Index — 0% ||is o
endif
endfor

foriin 0... TLBEntries—1
if (TLB[i]167..141 and not (0*° || TLBIil216. 205))
= EntryHigg _13) and not (0" || TLB[i]16...205)) and
(TLBIi]140 or (TLBI[i]135...108 = EntryHi7_g)) then
Index — 0% ||is o
endif
endfor

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual A-169

Appendix A

TLBR Read Indexed TLB Entry TLBR

31 26 25 24 6 5 0
COPO (6{0) 0 TLBR
010000 1 00000000000 0O0O0O0OO0OOOO 000001
6 1 19 6

Format:
TLBR
Description:

The G bit (which controls ASID matching) read from the TLB is written
into both of the EntryLo0 and EntryLol registers.

The EntryHi and EntryLo registers are loaded with the contents of the TLB
entry pointed at by the contents of the TLB Index register. The operation
is invalid (and the results are unspecified) if the contents of the TLB Index
register are greater than the number of TLB entries in the processor.

Operation:

32 T: PageMask — TLB[Indexs gli127..96
EntryHi — TLB[Indexs_olgs._s4 and not TLB[Indexs ol127. 96
EntryLol —TLB[Indexs ols3 32
EntryLoO — TLB[Indexs_olz1..0

64 T: PageMask — TLB[Indexs gloss 192
EntryHl - TLB[lndeX5.__0]191_“128 and not TLB[lndeX5.1_0]255__.192
EntryLol —TLB[Indexs_oli27. 65 || TLB[Indexs_ oli40
EntryLOO - TLB[lndeX5___0]63___1 ” TLB[lnd8X5___0]14o

Exceptions:

Coprocessor unusable exception

A-170 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TLBWI Write Indexed TLB Entry TLBWI

31 26 25 24 6 5 0
COPO (6{0) 0 TLBWI
010000 1 00000000000 0O0O0O0OO0OOOO oo0010
6 1 19 6
Format:
TLBWI
Description:

The G bit of the TLB is written with the logical AND of the G bits in the
EntryLoO and EntryLol registers.

The TLB entry pointed at by the contents of the TLB Index register is loaded
with the contents of the EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents of
the TLB Index register are greater than the number of TLB entries in the
processor.

Operation:

32,64T: TLB[Indexs o] «
PageMask || (EntryHi and not PageMask) || EntryLo1l || EntryLoO

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual A-171

Appendix A

TLBWR Write Random TLB Entry TLBWR

31 26 25 24 6 5 0
COPO (6{0) 0 TLBWR
010000 1 00000000000 0O00O0O0OO0OO0O0O 000110
6 1 19
Format:
TLBWR
Description:

The G bit of the TLB is written with the logical AND of the G bits in the
EntryLoO and EntryLol registers.

The TLB entry pointed at by the contents of the TLB Random register is
loaded with the contents of the EntryHi and EntryLo registers.

Operation:

32,64T: TLB[Randomg o]
PageMask || (EntryHi and not PageMask) || EntryLol || EntryLoO

Exceptions:

Coprocessor unusable exception

A-172 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TLT

Trap If Less Than

TLT

31 26 25 21 20 6 5 0
SPECIAL rs rt code TLT
000000 110010
6 5 5 10 6
Format:
TLTrs, rt
Description:

The contents of general register rt are compared to general register rs.
Considering both quantities as signed integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception

occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word

containing the instruction.

Operation:

32,64

T: if GPR[rs] < GPR]rt] then
TrapException

endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual

A-173

Appendix A

TLTI

Trap If Less Than Immediate

TLTI

31 26 25 21 20 16 15 0
REGIMM rs TLTI immediate
000001 01010
6 5 5 16
Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of

general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:
32 T: if GPR(rs] < (immediate;5)*® || immediate;5 o then
TrapException
endif
64 T: if GPR([rs] < (immediate;5)*2 || immediate;5 o then
TrapException
endif
Exceptions:

Trap exception

A-174

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TLTI U Trap If Less Than Immediate Unsigned TLTI U

31 26 25 21 20 16 15 0
REGIMM rs TLTIU immediate
000001 01011
6 5 5 16
Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of

general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:
32 T: if (0] GPR[rs]) < (0| (immediatelS)16 || immediate s _q) then
TrapException
endif
64 T: if (0]l GPRIrs]) < (0 || (immediate;5)*® || immediate;5_,) then
TrapException
endif
Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual

A-175

Appendix A

TLTU

Trap If Less Than Unsigned

TLTU

31 26 25 21 20 16 15 0
SPECIAL rs rt code TLTU
000000 110011
6 5 5 10 6

Format:
TLTU rs, rt
Description:

The contents of general register rt are compared to general register rs.
Considering both quantities as unsigned integers, if the contents of
general register rs are less than the contents of general register rt, a trap
exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word

containing the instruction.

Operation:

32, 64T:

if (0 || GPRYrs]) < (0 || GPR[rt]) then

TrapException

endif

Exceptions:

Trap exception

A-176

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TNE

Trap If Not Equal TNE

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TNE
000000 110110
6 5 5 10 6
Format:
TNE rs, rt
Description:

The contents of general register rt are compared to general register rs. If
the contents of general register rs are not equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

32,64T: if GPR[rs] # GPR][rt] then

TrapException
endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual A-177

Appendix A

TN EI Trap If Not Equal Immediate TN E

31 26 25 21 20 16 15 0
REGIMM rs TNEI immediate
000001 01110
6 5 5 16
Format:
TNEI rs, immediate
Description:
The 16-bit immediate is sign-extended and compared to the contents of
general register rs. If the contents of general register rs are not equal to the
sign-extended immediate, a trap exception occurs.
Operation:
32 T: if GPR[rs] # (immediate;5)*® || immediate;5 o then
TrapException
endif
64 T: if GPR]rs] # (immediate;5)*® || immediate;s o then
TrapException
endif
Exceptions:
Trap exception
A-178 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

XOR Exclusive Or XOR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 XOR
000000 00000 100110
6 5 5 5 5 6
Format:
XORrd, rs, rt
Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical exclusive OR operation.

The result is placed into general register rd.

Operation:

32,64 T: GPRJ[rd] « GPR]rs] xor GPR]rt]

Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-179

Appendix A

XORI Exclusive OR Immediate XOR

31 26 25 21 20 16 15 0
XORI rs rt immediate
001110
6 5 5 16
Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical exclusive OR operation.

The result is placed into general register rt.

Operation:

32 T: GPR[r] « GPR]rs]xor (0'° || immediate)
64 T: GPR[rt] — GPR]rs] xor (0*® || immediate)

Exceptions:

None

A-180 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

CPU Instruction Opcode Bit Encoding

The remainder of this Appendix presents the opcode bit encoding for the
CPU instruction set (ISA and extensions), as implemented by the R4000.
Figure A-2 lists the R4000 Opcode Bit Encoding.

28...26 Opcode
31...29 0 1 2 3 4 5 6 7
0 SPECIAL | REGIMM J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 COPO COP1 COP2 * BEQL BNEL | BLEZL | BGTZL
3 DADDIe |DADDIUe| LDLe LDRe * * * *
4 LB LH LWL LW LBU LHU LWR LWUe
5 SB SH SWL SW SDLe SDRe SWR |CACHE %
6 LL LWC1 LWC2 * LLDe LDC1 LDC2 LDeg
7 SC SWC1 SWC2 * SCDe SDC1 SDC2 SDe
2..0 SPECIAL function
5 3 0 1 2 3 4 5 6 7
0 SLL * SRL SRA SLLV * SRLV SRAV
1 JR JALR * * SYSCALL| BREAK * SYNC
2 MFEHI MTHI MFLO MTLO DSLLVe * DSRLVe | DSRAVe
3 MULT MULTU DIV DIVU DMULTe |IDMULTUg| DDIVe DDIVUe
4 ADD ADDU SUB SUBU AND OR XOR NOR
5 * * SLT SLTU DADDe | DADDUe| DSUBe | DSUBUEe
6 TGE TGEU TLT TLTU TEQ * TNE *
7 DSLLe * DSRLe DSRAg | DSLL32¢ * DSRL32¢ | DSRA32¢
18...16 REGIMM rt
20...19 0 1 2 3 4 5 6 7
0 BLTZ BGEZ BLTZL BGEZL * * * *
1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 BLTZAL | BGEZAL | BLTZALL |BGEZALL * * * *
3 * * * * * * * *
23..21 COPzrs
25, 24 0 2 3 4 5 6 7
0 MF DMFe | CF ['y MT | DMTe | CT y
1 BC Y Y Y Y Y Y Y
2 co
3
Figure A-2 R4000 Opcode Bit Encoding
MIPS R4000 Microprocessor User's Manual A-181

Appendix A

oor\n—\owmn—-o'w

<|<|<|<]|o
<|<|<|<]|o
<|<|<|<|~

CPO Function

w

[TLBWR |

elslsls|slsls
eeeeeeegm
elslsls|slslsls
elslsls|s|lslsls|>
slslsls|slslsls|n
elslsls|slsls
elslsls|slslsls|~

Figure A-2 (cont.) R4000 Opcode Bit Encoding

Key:

Operation codes marked with an asterisk cause reserved
instruction exceptions in all current implementations and are
reserved for future versions of the architecture.

Operation codes marked with a gamma cause a reserved
instruction exception. They are reserved for future versions of the
architecture.

Operation codes marked with a delta are valid only for R4000
processors with CP0O enabled, and cause a reserved instruction
exception on other processors.

Operation codes marked with a phi are invalid but do not cause
reserved instruction exceptions in R4000 implementations.

Operation codes marked with a xi cause a reserved instruction
exception on R4000 processors.

Operation codes marked with a chi are valid only on R4000.

Operation codes marked with epsilon are valid when the processor
is operating either in the Kernel mode or in the 64-bit non-Kernel
(User or Supervisor) mode. These instructions cause a reserved
instruction exception if 64-bit operation is not enabled in User or
Supervisor mode.

A-182

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Detalils

This appendix provides a detailed description of each floating-point unit
(FPU) instruction (refer to Appendix A for a detailed description of the
CPU instructions). The instructions are listed alphabetically, and any
exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate causes and the manner of handling exceptions are omitted
from the instruction descriptions in this appendix (refer to Chapter 7 for
detailed descriptions of floating-point exceptions and handling).

Figure B-3 at the end of this appendix lists the entire bit encoding for the
constant fields of the floating-point instruction set; the bit encoding for
each instruction is included with that individual instruction.

MIPS R4000 Microprocessor User's Manual B-1

Appendix B

B.1 Instruction Formats

There are three basic instruction format types:

= |-Type, or Immediate instructions, which include load and
store operations

= M-Type, or Move instructions

= R-Type, or Register instructions, which include the two-
and three-register floating-point operations.

The instruction description subsections that follow show how these three
basic instruction formats are used by:

= Load and store instructions

= Move instructions

= Floating-Point computational instructions
= Floating-Point branch instructions

Floating-point instructions are mapped onto the MIPS coprocessor
instructions, defining coprocessor unit number one (CP1) as the floating-
point unit.

Each operation is valid only for certain formats. Implementations may
support some of these formats and operations through emulation, but
they only need to support combinations that are valid (marked V in Table
B-1). Combinations marked R in Table B-1 are not currently specified by
this architecture, and cause an unimplemented operation trap. They will
be available for future extensions to the architecture.

B-2

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Table B-1 Valid FPU Instruction Formats

Source Format

Operation -
Single Double Word Longword

ADD \Y \Y R

SUB

MUL

DIV

SQRT

(0[O0
(0|0 |O0|0| D

ABS

MOV

NEG

TRUNC.L

ROUND.L

CEIL.L

FLOOR.L

TRUNC.W

ROUND.W

CEIL.W

HMEGENEDEY ENEYEd RN Ed G RS Ed R

FLOOR.W

MEN R ENEG R EYEY R Ed R R Ed R R

CVT.S

CVvT.D

CVT.W

CVT.L

<

< <1< <
<

C

MIPS R4000 Microprocessor User's Manual B-3

Appendix B

The coprocessor branch on condition true/false instructions can be used
to logically negate any predicate. Thus, the 32 possible conditions require
only 16 distinct comparisons, as shown in Table B-2 below.

Table B-2 Logical Negation of Predicates by Condition True/False

Condition Relations Invalid

: ration

Mnernonic Code | CGreater | Less Equal |Unordered 52(22302 If

True False Than Than Unordered
F T 0 F F F F No
UN OR 1 F F F T No
EQ NEQ 2 F F T F No
UEQ OGL 3 F F T T No
OLT UGE 4 F T F F No
ULT OGE 5 F T F T No
OLE UGT 6 F T T F No
ULE OGT 7 F T T T No
SF ST 8 F F F F Yes
NGLE GLE 9 F F F T Yes
SEQ SNE 10 F F T F Yes
NGL GL 11 F F T T Yes
LT NLT 12 F T F F Yes
NGE GE 13 F T F T Yes
LE NLE 14 F T T F Yes
NGT GT 15 F T T T Yes

B-4 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Floating-Point Loads, Stores, and Moves

All movement of data between the floating-point coprocessor and
memory is accomplished by coprocessor load and store operations, which
reference the floating-point coprocessor General Purpose registers. These
operations are unformatted; no format conversions are performed and,
therefore, no floating-point exceptions can occur due to these operations.

Data may also be directly moved between the floating-point coprocessor
and the processor by move to coprocessor and move from coprocessor
instructions. Like the floating-point load and store operations, move to/
from operations perform no format conversions and never cause floating-
point exceptions.

An additional pair of coprocessor registers are available, called Floating-
Point Control registers for which the only data movement operations
supported are moves to and from processor General Purpose registers.

Floating-Point Operations

The floating-point unit operation set includes:
- floating-point add
= floating-point subtract
= floating-point multiply
- floating-point divide
= floating-point square root
= convert between fixed-point and floating-point formats
= convert between floating-point formats
= floating-point compare

These operations satisfy the requirements of IEEE Standard 754
requirements for accuracy. Specifically, these operations obtain a result
which is identical to an infinite-precision result rounded to the specified
format, using the current rounding mode.

Instructions must specify the format of their operands. Except for
conversion functions, mixed-format operations are not provided.

MIPS R4000 Microprocessor User's Manual B-5

Appendix B

B.2 Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such as fs,
ft, immediate, and so on) are shown in lower-case. The instruction name
(such as ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

In some instructions, the instruction subfields op and function can have
constant 6-bit values. When reference is made to these instructions,
upper-case mnemonics are used. For instance, in the floating-point ADD
instruction we use op = COP1 and function = ADD. In other cases, asingle
field has both fixed and variable subfields, so the name contains both
upper and lower case characters. Bit encodings for mnemonics are shown
in Figure B-3 at the end of this appendix, and are also included with each
individual instruction.

In the instruction description examples that follow, the Operation section
describes the operation performed by each instruction using a high-level
language notation.

Instruction Notation Examples

The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:

GPR[rf] ~ immediate || 0'®

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General Purpose Register rt.

Example #2:

(immediate;5)*® || immediate;s o

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

B-6 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

B.3 Load and Store Instructions

In the R4000 implementation, the instruction immediately following a
load may use the contents of the register being loaded. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

The behavior of the load store instructions is dependent on the width of

the FGRs.

When the FR bit in the Status register equals zero, the Floating-
Point General registers (FGRs) are 32-bits wide.

When the FR bit in the Status register equals one, the Floating-
Point General registers (FGRs) are 64-bits wide.

In the load and store operation descriptions, the functions listed in
Table B-3 are used to summarize the handling of virtual addresses and
physical memory.

Table B-3 Load and Store Common Functions

Function

Meaning

AddressTranslation

Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present in the TLB.

LoadMemory

Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory

Uses the cache, write buffer, and main memory to store the
word or part of word specified as data in the word
containing the specified physical address. The low-order
two bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

MIPS R4000 Microprocessor User's Manual B-7

Appendix B

Figure B-1 shows the I-Type instruction format used by load and store
operations.

I-Type (Immediate)

31 26 25 21 20 16 15 0

offset

op is a 6-bit operation code
base is the 5-bit base register specifier

is a 5-bit source (for stores) or destination (for loads) FPA register

ft e
specifier

offset is the 16-bit signed immediate offset

Figure B-1 Load and Store Instruction Format

All coprocessor loads and stores reference aligned data items. Thus, for
word loads and stores, the access type field is always WORD, and the low-
order two bits of the address must always be zero.

For doubleword loads and stores, the access type field is always
DOUBLEWORD, and the low-order three bits of the address must always
be zero.

Regardless of byte-numbering order (endianness), the address specifies
that byte which has the smallest byte-address in the addressed field. For
a big-endian machine, this is the leftmost byte; for a little-endian machine,
this is the rightmost byte.

B-8 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

B.4 Computational Instructions

Computational instructions include all of the arithmetic floating-point

operations performed by the FPU.

Figure B-2 shows the R-Type instruction format used for computational
operations.

R-Type (Register)

31 26 25 21 20 16 15 11 10 6 5
COP1 fmt ft fs fd function
6 5 5 5 5 6

COP1 is a 6-bit operation code

fmt is a 5-bit format specifier

fs is a 5-bit sourcel register

ft is a 5-bit source2 register

fd is a 5-bit destination register

function is a 6-

bit function field

Figure B-2 Computational Instruction Format

The function field indicates the floating-point operation to be performed.

Each floating-point instruction can be applied to a number of operand

formats. The operand format for an instruction is specified by the 5-bit
format field; decoding for this field is shown in Table B-4.

Table B-4 Format Field Decoding

Code | Mnemonic Size Format

16 S single Binary floating-point

17 D double Binary floating-point

18 Reserved

19 Reserved

20 W single 32-bit binary fixed-point
21 L longword 64-bit binary fixed-point
22-31 Reserved

Table B-5 lists all floating-point instructions.

MIPS R4000 Microprocessor

User's Manual

B-9

Appendix B

Table B-5 Floating-Point Instructions and Operations

Code

(5:0) Mnemonic Operation
0 ADD Add
1 SuUB Subtract
2 MUL Multiply
3 DIV Divide
4 SQRT Square root
5 ABS Absolute value
6 MOV Move
7 NEG Negate
8 ROUND.L g\;)enr:/ert to 64-bit (long) fixed-point, rounded to nearest/
9 TRUNC.L Convert to 64-bit (long) fixed-point, rounded toward zero
10 CEIL.L Convert to 64-bit (long) fixed-point, rounded to +o
11 FLOOR.L Convert to 64-bit (long) fixed-point, rounded to -«
12 ROUND.W | Convert to single fixed-point, rounded to nearest/even
13 TRUNC.W | Convert to single fixed-point, rounded toward zero
14 CEIL.W Convert to single fixed-point, rounded to + o
15 FLOOR.W | Convert to single fixed-point, rounded to — oo
16-31 |- Reserved
32 CVT.S Convert to single floating-point
33 CVT.D Convert to double floating-point
34 - Reserved
35 - Reserved
36 CVT.W Convert to 32-bit binary fixed-point
37 CVT.L Convert to 64-bit (long) binary fixed-point
38-47 | - Reserved
48-63 | C Floating-point compare

B-10

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

In the following pages, the notation FGR refers to the 32 General Purpose
registers FGRO through FGR3L1 of the FPU, and FPR refers to the floating-
point registers of the FPU.

= When the FR bit in the Status register (SR(26)) equals zero, only
the even floating-point registers are valid and the 32 General
Purpose registers of the FPU are 32-bits wide.

< When the FR bit in the Status register (SR(26)) equals one, both
odd and even floating-point registers may be used and the 32
General Purpose registers of the FPU are 64-bits wide.

The following routines are used in the description of the floating-point
operations to retrieve the value of an FPR or to change the value of an FGR:

value « ValueFPR(fpr,fmt)

if SRog = 1 then /* 64-bit wide FGRs */
case fmt of
S, W:
value — FGR[fpr]s; o
return
D, L:
value «— FGR[fpr]
return
endcase
elseif fprg = 0 then /* valid specifier, 32-bit wide FGRs */
case fmt of
S, W:
value «— FGRJfpr]
return
D, L:
value — FGR[fpr+1] || FGR[fpr]
return
endcase
else /* undefined result for odd 32-bit reg #s */
value « undefined
endif

MIPS R4000 Microprocessor User's Manual B-11

Appendix B

StoreFPR(fpr, fmt, value)

if SRy = 1 then /* 64-bit wide FGRs */
case fmt of
S, W:
FGR][fpr] « undefined3? || value
return
D, L:
FGR[fpr] « value
return
endcase
elseif fprg = 0 then /* valid specifier, 32-bit wide FGRs */
case fmt of
S, W:
FGR[fpr+1] « undefined
FGR[fpr] « value
return
D, L:
FGR[pr'l] «— value63m32
FGR[fpr] “«— Value31___o
return
endcase
else /* undefined result for odd 32-bit reg #s */
undefined_result
endif

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

ABS.fmt st e ABS.fmt

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt 0 fs fd ABS
00000 000101

6

5 5 5 5 6

Format:

Descri

ABS.fmt fd, fs

ption:

The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic absolute value is taken. The result is
placed in the floating-point register specified by fd.

The absolute value operation is arithmetic; a NaN operand signals invalid
operation.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor unusable exception
Coprocessor exception trap

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception

MIPS R4000 Microprocessor User's Manual B-13

Appendix B

ADD.f

mt Floating-Point Add ADD.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd ADD
010001 000000
6 5 5 5 5 6

Format:
ADD.fmt fd, fs, ft

Description:
The contents of the FPU registers specified by fs and ft are interpreted in
the specified format and arithmetically added. The result is rounded as if
calculated to infinite precision and then rounded to the specified format
(fmt), according to the current rounding mode. The result is placed in the
floating-point register (FPR) specified by fd.
This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

B-14 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

BC1F P Coprocessor) - BC1F

31 26 25 21 20 1615 0
COP1 BC BCF offset
010001 01000 00000
6 5 5 16
Format:
BC1F offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is false
(zero), the program branches to the target address, with a delay of one
instruction.

There must be at least one instruction between C.cond.fmt and BC1F.

Operation:

32 T-1: condition — not COCJ[1]
T: target — (offset;5)'* || offset || 02
T+1: if condition then
PC ~ PC + target
endif

64 T-1: condition — not COC[1]
T: target — (offset;5)*® || offset || 02
T+1: if condition then
PC ~ PC + target
endif

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual B-15

Appendix B

Branch On FPU False Likel
BC]-FL r (Coprocessorsl) ey

BC1FL

31 26 25 21 20 1615 0
COP1 BC BCFL offset
010001 01000 00010
6 5 5 16
Format:
BC1FL offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is false
(zero), the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the

branch delay slot is nullified.

There must be at least one instruction between C.cond.fmt and BC1FL.

Operation:

32 T-1: condition — not COC[1]
T: target (offset;5)'* || offset || 02
T+1: if condition then
PC ~ PC + target

else
NullifyCurrentinstruction
endif
64 T-1: condition — not COCJ1]
T: target — (offset;s)*® || offset || 02

T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

Coprocessor unusable exception

B-16 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Branch On FPU True
BClT (Coprocessor 1)u BC]-T

31 26 25 21 20 16 15 0
COP1 BC BCT offset
010001 01000 00001
6 5 5 16
Format:
BCLT offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is true (one),
the program branches to the target address, with a delay of one
instruction.

There must be at least one instruction between C.cond.fmt and BC1T.

Operation:

32 T-1: condition — COCJ1]
T: target — (offset;5)** || offset || 02
T+1: if condition then
PC ~ PC + target
endif

64 T-1: condition -« COCJ1]
T: target — (offset;5)*® || offset || 02
T+1: if condition then
PC ~ PC + target
endif

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual B-17

Appendix B

BCITL “"™Copocessarny > BCI1TL

31 26 25 21 20 16 15 0
COP1 BC BCTL offset
010001 01000 00011
6 5 5 16
Format:
BCLTL offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is true (one),
the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

There must be at least one instruction between C.cond.fmt and BC1TL.

Operation:
32 T-1: condition —« COCJ[1]
T: target — (offset;5)** || offset || 0

T+1: if condition then
PC ~ PC + target

else
NullifyCurrentinstruction
endif
64 T-1: condition — COC[1]
T: target — (offset;5)*® || offset || 0

T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

Coprocessor unusable exception

B-18 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Floating-Point

C.cond.fmt Compare C.cond.fmt

31 26 25 21 20 16 15 11 10 6 5 43 0
COP1 fmt ft fs 0 FC* cond*
010001 00000
6 5 5 5 5 2 4
Format:

C.cond.fmt fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format, fmt, and arithmetically compared.

A result is determined based on the comparison and the conditions
specified in the cond field. If one of the values is a Not a Number (NaN),
and the high-order bit of the cond field is set, an invalid operation
exception is taken. After a one-instruction delay, the condition is available
for testing with branch on floating-point coprocessor condition
instructions. There must be at least one instruction between the compare
and the branch.

Comparisons are exact and can neither overflow nor underflow. Four
mutually-exclusive relations are possible results: less than, equal, greater
than, and unordered. The last case arises when one or both of the
operands are NaN; every NaN compares unordered with everything,
including itself.

Comparisons ignore the sign of zero, so +0 = -0.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

*See “FPU Instruction Opcode Bit Encoding” at the end of Appendix B.

MIPS R4000 Microprocessor User's Manual B-19

Appendix B

C.cond.fmt ~ FOEpaFe C.cond.fmt

(continued)

Operation:
T: if NaN(ValueFPR(fs, fmt)) or NaN(ValueFPR(ft, fmt)) then
less — false
equal — false
unordered — true
if cond; then
signal InvalidOperationException
endif
else
less — ValueFPR(fs, fmt) < ValueFPR(ft, fmt)
equal « ValueFPR(fs, fmt) = ValueFPR(ft, fmt)
unordered - false
endif
condition — (cond, and less) or (cond; and equal) or
(condg and unordered)
FCR[31],3 « condition
COC[1] « condition

Exceptions:
Coprocessor unusable
Floating-Point exception
Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception

B-20 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

CEIL.L.fmt Camieiongs CEIL.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CEIL.L
010001 00000 001010
6 5 5 5 5 6

Format:
CEIL.L.fmtfd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to +o (2).

This instruction is valid only for conversion from single- or double-
precision floating-point formats. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of 253 to 283 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 25%-1 is returned.

MIPS R4000 Microprocessor User's Manual B-21

Appendix B

CEIL.L.fmt Floating-Point CEIL.L.fmt

Ceiling to Long
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-22

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

CEILW.fmt Cefingosinge CEIL.W.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CEILW
010001 00000 001110
6 5 5 5 5 6

Format:
CEIL.W.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to +o (2).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of —231 to 231 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%1-1 is returned.

MIPS R4000 Microprocessor User's Manual B-23

Appendix B

CEILW.fmt ~.oating-Point =~ W fmt

Ceiling to Single
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-24 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Move Control Word From FPU
CFC1 (Coprocessor 1) CFC1

31 26 25 21 20 16 15 11 10 0
COP1 CF rt fs 0
010001 00010 000 0000O0O0O0O
6 5 5 5 11
Format:
CFC1rt, fs
Description:

The contents of the FPU control register fs are loaded into general register
rt.

This operation is only defined when fs equals 0 or 31.

The contents of general register rt are undefined for the instruction
immediately following CFCL.

Operation:

32 T: temp ~ FCR[fs]
T+1: GPR[rt] ~ temp

64 T: temp ~ FCR[fs]
T+1: GPR[rt] — (temps;)%? || temp

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual B-25

Appendix B

CTC1

Move Control Word To FPU
(Coprocessor 1) CTC 1

31

26 25 21 20 16 15 11 10 0

CT rt fs 0
00110 000 0000O0O0O0O0

5 5 5 11

Format

CTC1rt, fs

Description:

Operat

The contents of general register rt are loaded into FPU control register fs.
This operation is only defined when fs equals 0 or 31.

Writing to Control Register 31, the floating-point Control/Status register,
causes an interrupt or exception if any cause bit and its corresponding
enable bit are both set. The register will be written before the exception
occurs. The contents of floating-point control register fs are undefined for
the instruction immediately following CTCL1.

ion:

32

64

T: temp — GPR]rt]
T+1: FCR[fs] ~ temp
COC[1] ~ FCR[31]53

T: temp - GPR[rt]3; ¢
T+1: FCR[fs] ~ temp
COC[1] ~ FCR[31]53

Excepti

Coproc

ons:

Coprocessor unusable exception
Floating-Point exception

essor Exceptions:

Unimplemented operation exception
Invalid operation exception

Division by zero exception

Inexact exception

Overflow exception

Underflow exception

B-26

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

CVT.D.fmt comettpome CVT.D.fmt

Floating-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt 0 fs fd CVT.D
00000 100001

6

5 5 5 5 6

Format:

CVT.D.fmtfd, fs

Description:

The contents of the floating-point register specified by fs is interpreted in
the specified source format, fmt, and arithmetically converted to the
double binary floating-point format. The result is placed in the floating-
point register specified by fd.

This instruction is valid only for conversions from single floating-point
format, 32-bit or 64-bit fixed-point format.

If the single floating-point or single fixed-point format is specified, the
operation is exact. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T:

StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

Underflow exception

MIPS R4000 Microprocessor User's Manual B-27

Appendix B

CVT.Lfmt Sooetmions CVT.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.L
010001 00000O 100101
6 5 5 5 5 6

Format:

CVT.L.fmtfd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd. This instruction is valid only for conversions from single-
or double-precision floating-point formats. The operation is not defined if
bit 0 of any register specification is set and the FR bit in the Status register
equals zero.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of —283 10 283_1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%-1 is returned.

Operation:

T: StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-28 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Floating-Point

CVT.S.fmt Convert to S|ng|e CVT.S.fmt

Floating-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.S
010001 00000 100000
6 5 5 5 5 6

Format:
CVT.S.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
binary floating-point format. The result is placed in the floating-point
register specified by fd. Rounding occurs according to the currently
specified rounding mode.
This instruction is valid only for conversions from double floating-point
format, or from 32-bit or 64-bit fixed-point format. The operation is not
defined if bit 0 of any register specification is set and the FR bit in the Status
register equals zero, since the register numbers specify an even-odd pair
of adjacent coprocessor general registers. When the FR bit in the Status
register equals one, both even and odd register numbers are valid.

Operation:

T: StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))
Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

Underflow exception

MIPS R4000 Microprocessor User's Manual B-29

Appendix B

CVT.W.fmt

Floating-Point
Convert to
Fixed-Point Format

CVT.W.fmt

31

26 25

21 20

16 15

11 10

6

COP1
010001

fmt

00000

fs

fd

CVT.W
100100

6

6

Format:

CVT.W.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd. This instruction is valid only for conversion from a single-
or double-precision floating-point formats. The operation is not defined if
bit 0 of any register specification is set and the FR bit in the Status register
equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status
register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of —2%! to 231-1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 _1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-30 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

DIV.Tmt Floating-Point Divide DIV.Tmt

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt ft fs fd DIV
000011

6

5 5 5 5 6

Format:

Descri

DIV.fmt fd, fs, ft
ption:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and the value in the fs field is divided by
the value in the ft field. The result is rounded as if calculated to infinite
precision and then rounded to the specified format, according to the
current rounding mode. The result is placed in the floating-point register
specified by fd.

This instruction is valid for only single or double precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

T:

StoreFPR (fd, fmt, ValueFPR(fs, fmt)/ValueFPR(ft, fmt))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception Invalid operation exception
Division-by-zero exception Inexact exception
Overflow exception Underflow exception

MIPS R4000 Microprocessor User's Manual B-31

Appendix B

Doubleword Move From
DM FC]— Floating-Point Coprocessor DM FCl

31 26 25 21 20 16 15 1110 0
COP1 DMF rt fs 0
010001 00001 000 0000 0O0O0Q
6 5 5 5 11
Format:
DMFC1rt, fs
Description:

The contents of register fs from the floating-point coprocessor is stored
into processor register rt.

The contents of general register rt are undefined for the instruction
immediately following DMFC1.

The FR bit in the Status register specifies whether all 32 registers of the
R4000 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR is set, fs
may specify either odd or even registers.

Operation:

64 T: if SRy = 1 then /* 64-bit wide FGRs */
data — FGR[fs]
elseif fsy=0then /*valid specifier, 32-bit wide FGRs */
data — FGR][fs+1] || FGR]fs]
else /* undefined for odd 32-bit reg #s */
data « undefined®
endif

T+1: GPR]rt] ~ data

Exceptions:

Coprocessor unusable exception
Coprocessor Exceptions:

Unimplemented operation exception

B-32 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Doubleword Move To
DMTC]— Floating-Point Coprocessor DMTC]—

31 26 25 21 20 16 15 1110 0
COP1 DMT rt fs 0
010001 00101 000 0000 0000
6 5 5 5 11
Format:
DMTC1 rt, fs
Description:

The contents of general register rt are loaded into coprocessor register fs of
the CP1.

The contents of floating-point register fs are undefined for the instruction
immediately following DMTCL.

The FR bit in the Status register specifies whether all 32 registers of the
R4000 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR equals
one, fs may specify either odd or even registers.

Operation:

64 T: data — GPR]rt]

T+1: if SRyg = 1then /*64-bit wide FGRs */

FGR][fs] — data

elseif fsg = 0 then /*valid specifier, 32-bit wide valid FGRs */
FGR[fs+1] ~ datags 3>
FGRI[fs] — dataz; g

else /* undefined result for odd 32-bit reg #s */
undefined_result

endif

Exceptions:

Coprocessor unusable exception
Coprocessor Exceptions:

Unimplemented operation exception

MIPS R4000 Microprocessor User's Manual B-33

Appendix B

FLOOR.L.fmt ‘Mot FLOOR.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd FLOOR.L
010001 00000 001011
6 5 5 5 5 6

Format:

FLOOR.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to -oo (3).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of 2% to 283 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%3-1 is returned.

B-34 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

FLOOR.L.fmt FoangPont | OOR.L.fmt

Floor to Long
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

MIPS R4000 Microprocessor User's Manual B-35

Appendix B

FLOORW.fmt oo oerse FLOOR.W.fmt

Fixed-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt 0 fs fd FLOOR.W
00000 001111

6

5 5 5 5 6

Format:

FLOOR.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to —o (RM = 3).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of —2%1t0 2311, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
2311 is returned.

B-36

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

FLOOR.W.fmt [eainefomt 2| OOR.W.fmt

Floor to Single
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

MIPS R4000 Microprocessor User's Manual B-37

Appendix B

Load Doubleword to FPU

_DC1 (Coprocessor 1) LDCl
31 26 25 21 20 16 15 0
LDC1 base ft offset
110101
6 5 5 16
Format:

LDCL1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

In 32-bit mode, the contents of the doubleword at the memory location
specified by the effective address is loaded into registers ft and ft+1 of the
floating-point coprocessor. This instruction is not valid, and is undefined,
when the least significant bit of ft is non-zero.

In 64-bit mode, the contents of the doubleword at the memory location
specified by the effective address are loaded into the 64-bit register ft of the
floating point coprocessor.

The FR bit of the Status register (SR,g) specifies whether all 32 registers of
the R4000 are addressable. If FR equals zero, this instruction is not defined
when the least significant bit of ft is non-zero. If FR equals one, ft may
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

B-38 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Load Doubleword to FPU
LDC]— (Coprocessor 1) LDC]—

(continued)

Operation:
32 T: vAddr — ((offset;5)'® || offset;s_) + GPR[base]
64 T: vAddr — ((offset;5)*® || offset;s_o) + GPR[base]
32,64 (pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
data — LoadMemory(uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SRy = 1 then /* 64-bit wide FGRs */
FGRJft] —~ data

elseif ftg = 0then /* valid specifier, 32-bit wide FGRs */
FGRI[ft+1] — datagz 3,
FGR[ft] - data31m0

else /* undefined result if odd */
undefined_result

endif

Exceptions:

Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual B-39

Appendix B

LWC1

Load Word to FPU
(Coprocessor 1)

LWC1

31

26 25

21 20

16 15

base

ft

offset

16

Format:

LWC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of the
word at the memory location specified by the effective address is loaded
into register ft of the floating-point coprocessor.

The FR bit of the Status register specifies whether all 64-bit Floating-Point
registers are addressable. If FR equals zero, LWC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, LWC1
loads the low 32-bits of both even and odd Floating-Point registers.

If either of the two least-significant bits of the effective address is non-zero,

an address error exception occurs.

B-40

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Load Word to FPU
LWC 1 (Ogopro?:réss%r 1) LWC 1

(continued)

Operation:
32 T: vAddr — ((offset;s)10 || offset;s o) + GPR[base]
64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
32,64 (pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze.1_ 3 || (PAddr, o xor (ReverseEndian || 0%)
mem ~ LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU || 0%)
/* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
if SRy = 1 then /* 64-bit wide FGRs */

FGRIft] — undefined3? || memgy ,guyte._gehyte
else /* 32-bit wide FGRs */

FGRIft] — memgzy.gsyte...8byte
endif

Exceptions:

Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual B-41

Appendix B

M F FPU
M F C 1 (C%\:Jerocrgsr,gor 1) M F C 1

31 26 25 21 20 16 15 11 10 0
COP1 MF rt fs 0
010001 | 00000 00000000000
6 5 5 5 11
Format:
MFC1 rt, fs
Description:

The contents of register fs from the floating-point coprocessor are stored
into processor register rt.

The contents of register rt are undefined for the instruction immediately
following MFC1.

The FR bit of the Status register specifies whether all 32 registers of the
R4000 are addressable. If FR equals zero, MFC1 stores either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MFC1
stores the low 32-bits of both even and odd Floating-Point registers.

Operation:

32 T: data — FGR[fs]z1 o
T+1: GPR[rt] < data

64 T data ~ FGRIfs]l3; o
T+l: GPR[rt] — (datag;)®? || data

Exceptions:

Coprocessor unusable exception

B-42 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

MOV.fmt Floating-Point Move MOV.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd MOV
010001 00000 000110

5 5 5 5 6
Format:

MOV.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the
specified format and are copied into the FPU register specified by fd.

The move operation is non-arithmetic; no IEEE 754 exceptions occur as a
result of the instruction.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

T:

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

MIPS R4000 Microprocessor User's Manual B-43

Appendix B

MTC1 Conmecoasor) MTC1

31 26 25 21 20 16 15 11 10 0
COP1 MT rt fs 0
010001 00100 000 00000000
6 5 5 5 11
Format:
MTC1rt, fs
Description:

The contents of register rt are loaded into the FPU general register at
location fs.

The contents of floating-point register fs is undefined for the instruction
immediately following MTCL.

The FR bit of the Status register specifies whether all 32 registers of the
R4000 are addressable. If FR equals zero, MTC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MTC1
loads the low 32-bits of both even and odd Floating-Point registers.

Operation:

32,64 T: data — GPRIrt]3; o
T+1: if SRyg=1then /*64-bit wide FGRs */
FGR[fs] — undefined®? || data
else /* 32-bit wide FGRs */
FGR][fs] — data
endif

Exceptions:

Coprocessor unusable exception

B-44 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

MUL.fmt Floating-Point Multiply MUL.fmt

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt ft fs fd MUL
000010

6

5 5 5 5 6

Format:

MUL.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and arithmetically multiplied. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception

Inexact exception

Overflow exception

Underflow exception

MIPS R4000 Microprocessor User's Manual B-45

Appendix B

NEG.fmt Floating-Point Negate NEG.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd NEG
010001 00000 000111
6 5 5 5 5 6

Format:
NEG.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic negation is taken (polarity of the sign-
bit is changed). The result is placed in the FPU register specified by fd.
The negate operation is arithmetic; an NaN operand signals invalid
operation.
This instruction is valid only for single- or double-precision floating-point
formats. The operation is not defined if bit 0 of any register specification
is set and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception

B-46 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

ROUND.L.fmt [fezngPort ROUND.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd ROUND.L
010001 00000 001000
6 5 5 5 5 6
Format:
ROUND.L.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of 2% to 283 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2% -1 is returned.

MIPS R4000 Microprocessor User's Manual B-47

Appendix B

ROUND.L.fmt eameront ROUND.L.fmt

Round to Long
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-48

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

ROUND.W.fmt Floating-Point - ROUND.W.fmt

Round to Single
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd ROUND.W
010001 00000 001100
6 5 5 5 5 6
Format:
ROUND.W.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to the nearest/even
(RM =0).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of 281102811, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 _1 is returned.

MIPS R4000 Microprocessor User's Manual B-49

Appendix B

ROUND.W.fmt Floating-Point - ROUND.W.fmt

Round to Single
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-50 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Store Doubleword from FPU
SDC]. (Coprocessor 1) SDCl
31 26 25 21 20 16 15 0

SDC1 base ft offset

111101

6 5 5 16
Format:
SDC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

In 32-bit mode, the contents of registers ft and ft+1 from the floating-point
coprocessor are stored at the memory location specified by the effective
address. This instruction is not valid, and is undefined, when the least
significant bit of ft is non-zero.

In 64-bit mode, the 64-bit register ft is stored to the contents of the
doubleword at the memory location specified by the effective address.
The FR bit of the Status register (SR,g) specifies whether all 32 registers of
the R4000 are addressable. When FR equals zero, this instruction is not
defined if the least significant bit of ft is non-zero. If FR equals one, ft may
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

MIPS R4000 Microprocessor User's Manual B-51

Appendix B

Store Doubleword from FPU
S DC 1 (Coprocessor 1) S DC 1

(continued)

Operation:
32 T: vAddr — (offset;)0 || offset;s o) + GPR[base]
64 T: VAddr — (offset;s)*® || offset;s o) + GPR[base]
32,64 (pAddr, uncached) — AddressTranslation (vAddr, DATA)

if SRy =1 /* 64-bit wide FGRs */
data —~ FGR]ft]
elseif ftg =0 then /* valid specifier, 32-bit wide FGRs */
data — FGR[ft+1] || FGRJft]
else /* undefined for odd 32-bit reg #s */
data « undefined®*
endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

B-52 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

SQRT.fmt ‘&amdron SQRT.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd SQRT
010001 00000 000100
6 5 5 5 5 6

Format:
SQRT.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified format and the positive arithmetic square root is taken. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. If the value
of fs corresponds to -0, the result will be -0. The result is placed in the
floating-point register specified by fd.
This instruction is valid only for single- or double-precision floating-point
formats.
The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

T: StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact exception

MIPS R4000 Microprocessor User's Manual B-53

Appendix B

SUB.fmt Floating-Point Subtract SUB.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd SUB
010001 000001
6 5 5 5 5 6
Format:
SUB.fmt fd, fs, ft
Description:
The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and the value in the ft field is subtracted
from the value in the fs field. The result is rounded as if calculated to
infinite precision and then rounded to the specified format, according to
the current rounding mode. The result is placed in the floating-point
register specified by fd. This instruction is valid only for single- or double-
precision floating-point formats.
The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.
Operation:
T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) — ValueFPR(ft, fmt))
Exceptions:
Coprocessor unusable exception
Floating-Point exception
Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception
B-54 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Store Word from FPU
SWC 1 (Coprocessor 1) SWC 1

31 26 25 21 20 16 15 0
SWC1 base ft offset
111001
6 5 5 16
Format:
SWCL1 ft, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of
register ft from the floating-point coprocessor are stored at the memory
location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit floating-point
registers are addressable.

If FR equals zero, SWC1 stores either the high or low half of the 16 even
floating-point registers.

If FR equals one, SWC1 stores the low 32-bits of both even and odd
floating-point registers.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

MIPS R4000 Microprocessor User's Manual B-55

Appendix B

SWC1 “Coprocessor1) - SWC1

(continued)

Operation:
32 T: vAddr — ((offset;5)*® || offset;s o) + GPR[base]
64 T: vAddr — ((offset;5)*8 || offset;s o) + GPR[base]
32,64 (pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrps;ze.1 3 || (PAddr, qxor (ReverseEndian || 0%))
byte — vAddr, , xor (BigEndianCPU || 0%)
/* the bytes of the word are put in the correct byte lanes in
* “data” for a 64-bit path to memory */
if SRy = 1 then /* 64-bit wide FGRs */
data « FGRIftleg-g+byte..0 || 05
else /* 32-bit wide FGRs */
data ~ 0328'0Ye || FGRIft] || 08"P¥te
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

B-56 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

TRUNC.L.fmt _FeatingPont o yNC.L.fmt

Truncate to Long
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd TRUNC.L
010001 00000 001001
6 5 5 5 5 6
Format:
TRUNC.L.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of —2%3 to 2831, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%3-1 is returned.

MIPS R4000 Microprocessor User's Manual B-57

Appendix B

TRUNC.L.fmt _FeaingPont T yNC.L.fmt

Truncate to Long
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-58 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

TRUNC.W.fmt ,[eaneron TRUNC.W.fmt

Truncate to Single
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd TRUNC.W
010001 00000 001101
6 5 5 5 5 6
Format:
TRUNC.W.fmt fd, fs
Description:

The contents of the FPU register specified by fs are interpreted in the
specified source format fmt and arithmetically converted to the single
fixed-point format. The resultis placed in the FPU register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round toward zero (RM =1).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of =23 to 2311, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
-23Lis returned.

MIPS R4000 Microprocessor User's Manual B-59

Appendix B

TRUNC.W.fmt _Floating-Point TRUNC.W.fmt

Truncate to Single
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-60 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

FPU Instruction Opcode Bit Encoding

Opcode
28...26

31...29 0 1 2 3 4 5 6 7
0
1
2 COP1
3
4
5
6 LWC1 LDC1
7 SWC1 SDC1

sub
23..21

o5 o4 O 1 2 3 4 5 6 7
0 MF DMFn CF 5 MT DMTn CT 5
1 BC > 5 > 5 > >
2 S D 5 Ln) 5
3 5 5 b) 5) 5 5

18...16 br

20..19 O 1 2 3 4 5 6 7
0 BCF | BCT BCFL BCTL y y y y
1 y y y y y y y y
2 y y Y y y Y y Y
3 y Y y y y y Y y

Figure B-3 Bit Encoding for FPU Instructions

MIPS R4000 Microprocessor User's Manual B-61

Appendix B

2.0 function
5.3 0 1 2 3 4 5 6 7
0 ADD SUB MUL DIV SQRT ABS MOV NEG
1 |ROUND.LN| TRUNC.LN| CEIL.LN |FLOOR.LN|ROUND.W | TRUNC.W| CEILW |FLOOR.W
2 o 1) o o o o o o
3 1) o 1) o o 1) 1) o
4 CVT.S | CVT.D o) CVT.W | CVT.Ln bo) b}
5 o e} e} o 1) o) o
6 C.F C.UN C.EQ | CUEQ | C.OLT | C.ULT | C.OLE | C.ULE
7 C.SF | C.NGLE| C.SEQ | C.NGL | C.LT C.NGE | C.LE | C.NGT
Figure B-3 (cont.) Bit Encoding for FPU Instructions

Key:

y Operation codes marked with a gamma cause a reserved
instruction exception. They are reserved for future versions of the
architecture.

0 Operation codes marked with a delta cause unimplemented
operation exceptions in all current implementations and are
reserved for future versions of the architecture.

n Operation codes marked with an eta are valid only when MIPS llI

instructions are enabled. Any attempt to execute these without
MIPS Il1 instructions enabled causes an unimplemented operation
exception.

B-62

MIPS R4000 Microprocessor User's Manual

