
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

Pascal Language Reference

Part No.: 802-5762-10
Revision A, December 1996

SunSoft, Inc.

Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, the Sun Microsystems Computer Corporation logo, the SunSoft logo,
ProWorks, ProWorks/TeamWare, ProCompiler, Sun-4, SunOS, ONC, ONC+, NFS, OpenWindows, DeskSet, ToolTalk, SunView,
XView, X11/NeWS, AnswerBook are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. PowerPC™ is a
trademark of International Business Machines Corporation. HP ® and HP-UX ® are registered trademarks of Hewlett-Packard
Company.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

iii

Contents

Preface. xix

1. Lexical Elements . 1

Character Set . 1

Special Symbols. 2

Reserved Words . 3

Identifiers . 4

Comments . 6

2. Data Types . 9

Summary of Data Format Differences 10

Default Data Alignments and Padding 10

Data Formats with -calign . 11

Data Formats with -xl . 12

Data Formats with -calign and -xl 12

real . 13

real Variables . 13

iv Pascal Language Reference

real Initialization . 13

real Constants. 14

Data Representation . 15

Integer . 16

Integer Variables . 17

Integer Initialization. 18

Integer Constants . 18

Data Representation . 19

boolean . 20

boolean Variables . 20

boolean Initialization. 20

boolean Constants . 21

Data Representation . 21

Character . 22

Character Variables . 22

Character Initialization . 22

Character Constants . 23

Data Representation . 23

Enumerated Types . 23

Enumerated Variables . 24

Data Representation . 24

Subrange . 25

 Subrange Variables . 25

 Data Representation . 25

Contents v

Record . 26

Record Variables . 27

Record Initialization. 27

Data Representation of Unpacked Records. 30

Data Representation of Packed Records 30

Array . 34

Array Variables . 34

Array Initialization. 36

Packed Arrays . 37

Data Representation . 37

Set . 38

Set Variables . 38

Set Initialization . 38

Packed Sets . 39

Data Representation . 39

File . 41

Pointer . 41

Standard Pointer . 41

Universal Pointer . 42

Procedure and Function Pointers . 43

Pointer Initialization . 45

Data Representation . 45

3. Statements . 47

Standard Statements. 47

vi Pascal Language Reference

Statements Specific to Pascal . 47

assert Statement . 48

case Statement. 51

exit Statement. 52

goto Statement. 54

next Statement. 56

otherwise Statement . 58

return Statement . 59

with Statement. 60

4. Assignments and Operators . 63

Data Type Assignments and Compatibility. 63

String Assignments. 64

Fixed- and Variable-Length Strings 64

Null Strings . 65

String Constants . 65

Operators . 66

Arithmetic Operators . 66

The mod Operator . 66

Bit Operators . 68

boolean Operators . 68

The and then Operator . 69

The or else Operator . 70

Set Operators. 71

Relational Operators . 72

Contents vii

Relational Operators on Sets . 72

The = and <> Operators on Records and Arrays 73

String Operators . 75

 Precedence of Operators . 76

5. Program Declarations . 77

Declarations. 77

Label Declaration . 77

Constant Declaration . 79

Type Declaration. 79

Variable Declaration . 80

Define Declaration . 83

Procedure and Function Headings . 84

Visibility. 84

Parameter List . 85

Type Identifier. 89

Functions Returning Structured-Type Results 89

Options . 91

6. Built-In Procedures and Functions . 95

Standard Procedures and Functions. 95

Routines Specific to Pascal (Summary) 96

Routines Specific to Pascal (Details) . 99

addr . 99

append . 102

argc . 105

viii Pascal Language Reference

argv . 105

arshft . 107

asl . 109

asr . 111

card . 112

clock . 113

close . 116

concat . 117

date . 118

discard . 120

expo . 123

filesize . 124

firstof . 126

flush . 130

getenv . 132

getfile . 134

halt . 136

in_range . 138

index . 139

land . 142

lastof . 144

length . 145

linelimit . 147

lnot . 149

Contents ix

lor . 150

lshft . 151

lsl . 153

lsr . 153

max . 153

message . 155

min . 156

null . 157

open . 158

pcexit . 161

random . 162

read and readln . 163

remove . 166

reset . 167

rewrite . 168

rshft . 171

seed . 172

seek . 174

sizeof . 176

stlimit . 180

stradd . 182

substr . 183

sysclock . 184

tell . 185

x Pascal Language Reference

time . 187

trace . 189

trim . 191

Type Transfer. 193

wallclock . 195

write and writeln . 198

xor . 200

7. Input and Output . 203

Input and Output Routines . 203

eof and eoln Functions . 204

More About eoln . 208

External Files and Pascal File Variables 210

Permanent Files . 210

Temporary Files . 211

input , output , and errout Variables 211

Properties of input , output , and errout Variables. . . 211

Associating input with a File Other Than stdin 212

Associating output with a File Other Than stdout . . . 212

Associating errout with a File Other Than stderr . . . 212

Pascal I/O Library . 213

Buffering of File Output. 213

I/O Error Recovery. 214

A. Overview of Pascal Extensions . 219

Lexical Elements . 219

Contents xi

Data Types . 220

Statements . 221

Assignments and Operators . 221

Headings and Declarations . 221

Procedures and Functions . 222

Built-In Routines . 222

Input and Output . 225

Program Compilation. 225

B. Pascal and DOMAIN Pascal . 227

The –xl Option. 227

DOMAIN Pascal Features Accepted but Ignored 228

DOMAIN Pascal Features Not Supported. 229

C. Implementation Restrictions . 231

Identifiers . 231

Data Types . 231

real . 232

Integer . 232

Character . 232

Record . 232

Array . 232

Set . 233

Alignment . 233

Nested Routines . 235

Default Field Widths . 236

xii Pascal Language Reference

D. Pascal Validation Summary Report . 237

Test Conditions . 237

Manufacturer’s Statement of Compliance 237

Implementation-Defined Features 238

Reporting of Errors. 239

Implementation-Dependent Features 240

Extensions . 240

Glossary . 241

Index . 255

xiii

Figures
Figure 2-1 32-Bit Floating-Point Number . 15

Figure 2-2 64-Bit Floating-Point Number . 15

Figure 2-3 16-Bit Integer . 20

Figure 2-4 32-Bit Integer . 20

Figure 2-5 true boolean Variable . 21

Figure 2-6 false boolean Variable . 22

Figure 2-7 16-Bit Enumerated Variable . 24

Figure 2-8 Sample Enumerated Representation . 25

Figure 2-9 16-Bit Subrange . 26

Figure 2-10 32-Bit Subrange . 26

Figure 2-11 Sample Packed Record (Without -xl) . 33

Figure 2-12 Small Set . 40

Figure 2-13 Large Set . 41

Figure 2-14 Pointer . 45

xiv Pascal Language Reference

xv

Tables
Table 1-1 Nonstandard Special Symbols. 2

Table 1-2 Standard Reserved Words . 3

Table 1-3 Nonstandard Reserved Words . 4

Table 1-4 Predeclared Standard Identifiers. 4

Table 1-5 Predeclared Nonstandard Identifiers . 5

Table 2-1 real Data Types . 13

Table 2-2 Representation of Extreme Exponents . 15

Table 2-3 Hexadecimal Representation of Selected Numbers 16

Table 2-4 Integer Data Types . 17

Table 2-5 Values for maxint and minint . 19

Table 2-6 Nonstandard Predeclared Character Constants 23

Table 2-7 Subrange Data Representation . 26

Table 2-8 Packed Record Storage Without –xl . 31

Table 2-9 Packed Record Storage with –xl . 32

Table 2-10 Packed Record Storage with -calign 32

Table 2-11 Sample Sizes and Alignment of Packed Record 33

xvi Pascal Language Reference

Table 2-12 Array Data Types. 34

Table 2-13 Data Representation of Sets . 40

Table 3-1 Nonstandard Pascal Statements . 48

Table 4-1 Data Type Assignment . 64

Table 4-2 Fixed- and Variable-Length String Assignments 65

Table 4-3 Null String Assignments . 65

Table 4-4 Arithmetic Operators . 66

Table 4-5 Bit Operators . 68

Table 4-6 boolean Operators . 69

Table 4-7 Set Operators . 71

Table 4-8 Relational Operators . 72

Table 4-9 Precedence of Operators. 76

Table 6-1 Standard Procedures . 95

Table 6-2 Standard Functions . 96

Table 6-3 Nonstandard Arithmetic Routines . 96

Table 6-4 Nonstandard Bit Shift Routines. 97

Table 6-5 Nonstandard Character String Routines 97

Table 6-6 Nonstandard Input and Output Routines 98

Table 6-7 Extensions to Standard Input and Output Routines 98

Table 6-8 Miscellaneous Nonstandard Routines . 99

Table 6-9 firstof Return Values. 128

Table 6-10 land Truth . 142

Table 6-11 lastof Return Values . 145

Table 6-12 lnot Truth . 150

Table 6-13 lor Truth . 151

Tables xvii

Table 6-14 open Error Codes . 159

Table 6-15 Default Field Widths . 199

Table 6-16 xor Truth . 201

Table 7-1 Extensions to Input/Output Routines . 204

Table 7-2 Pascal File Variable with a Permanent File 210

Table 7-3 Pascal File Variable with a Temporary File 211

Table A-1 Nonstandard Identifiers. 220

Table B-1 Differences Between Programs Compiled with and without –xl 227

Table C-1 Values for single and double . 232

Table C-2 maxint and minint . 232

Table C-3 Internal Representation of Data Types without –xl 234

Table C-4 Internal Representation of Data Types with -xl 235

Table C-5 Default Field Widths. 236

xviii Pascal Language Reference

xix

Preface

The Sun Workshop Compiler Pascal 4.2 is an implementation of the Pascal
language that includes all the standard language elements and many
extensions. These extensions allow greater flexibility in programs include:

• Separate compilation of programs and modules

• dbx (symbolic debugger) support, including fix-and-continue functionality

• Optimizer support

• Multiple label , const , type , and var declarations

• Variable-length character strings

• Compile-time initializations

• static and extern declarations

• Additional sizes of integer and real data types

• Integers in any base from 2 to 16

• Extended input/output facilities

• Extended library of built-in functions and procedures

• Universal and function and procedure pointer types

• Specification of the direction of parameter passing as one of the following:

° Into a routine
° Out of a routine
° Both into and out of a routine

xx Pascal Language Reference

In addition, Pascal 4.2 contains a compiler switch, -xl , to provide
compatibility with Apollo® DOMAIN® Pascal to ease the task of porting your
Apollo Pascal applications to workstations.

Note – All references to Pascal in this manual refer to the Sun Workshop
Compiler Pascal 4.2 unless otherwise indicated.

Audience
This manual provides reference material for the Pascal 4.2 compiler. To use this
manual, you should be familiar with ISO standard Pascal and with Solaris
commands and concepts.

Operating Environment
The Sun Workshop Compiler Pascal 4.2 runs on Solaris™ 2.x systems.

For other release-specific information, see the README file.

Installation
Instructions for installing Pascal and other software on your SPARCstation are
given in the Sun WorkShop Installation and Licensing Guide, which includes
information on installing the online documentation.

How This Manual Is Organized
This manual is a reference manual for Pascal extensions to Standard Pascal.
Chapters 1 through 7 describe extensions to the elements of a Pascal program:

• Chapter 1, “Lexical Elements”

• Chapter 2, “Data Types”

• Chapter 3, “Statements”

• Chapter 4, “Assignments and Operators”

• Chapter 5, “Program Declarations”

• Chapter 6, “Built-In Procedures and Functions”

Preface xxi

• Chapter 7, “Input and Output”

As each extension is presented, a complete example is provided to illustrate
that extension.

This manual also has four appendixes:

• Appendix A, “Overview of Pascal Extensions,” summarizes the Pascal
extensions to standard Pascal, and serves as a quick reference guide to the
differences between Pascal and standard Pascal.

• Appendix B, “Pascal and DOMAIN Pascal,” lists the differences between
Pascal and Apollo DOMAIN Pascal.

• Appendix C, “Implementation Restrictions,” describes Pascal features that
are implementation-defined.

• Appendix D, “Pascal Validation Summary Report,” summarizes the
features, errors, and extensions in the manufacturer’s statement of
compliance for the validation of the Pascal Version 4.2 compiler.

A glossary and an index are included at the end of the manual.

xxii Pascal Language Reference

Conventions Used in This Manual
This manual contains syntax diagrams of the Pascal language in extended
Backus-Naur Formalism (BNF) notation. It uses the following meta symbols:

The following table describes the type styles and symbols used in this manual:

Table P-1 BNF Meta Symbols

Meta Symbol Description

::= Defined as

| Can be used as an alternative

 (a | b) Either a or b

 [a] Zero or one instance of a

{ a } Zero or more instances of a

'abc ' The characters abc

Table P-2 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.
Use ls -a to list all files.
hostname% You have mail.

AaBbCc123 What you type, contrasted with on-
screen computer output

hostname% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms, or
words to be emphasized

Read the User’s Guide.
These are called class options.
You must be root to do this.

Preface xxiii

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Related Documentation
This manual is designed to accompany the following documents:

• The Pascal User’s Guide, which describes how to use the Pascal 4.2 compiler
• The Pascal Quick Reference Card, which summarizes the compiler options

Both this manual and the Pascal User’s Guide are available in the AnswerBook®

system, an online documentation viewing tool that takes advantage of
dynamically linked headings and cross-references. The Sun WorkShop
Installation and Licensing Guide shows you how to install AnswerBook.

Manual Page

Pascal 4.2 provides an online manual page (also known as a man page), on
pc (1), that describes the Pascal compiler. This document is included in the
Pascal package and must be installed with the rest of the software.

After you install the documentation, you can read about pc by entering the
man command followed by the command name, as in:

hostname% man pc

README Files

The README default directory is: /opt/SUNWspro/READMEs

Table P-3 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

xxiv Pascal Language Reference

This directory contains the following files:

• A Pascal 4.2 README, called pascal , which describes the new features,
software incompatibilities, and software bugs of Pascal 4.2.

• A floating-point white paper, “What Every Scientist Should Know About
Floating-Point Arithmetic,” by David Goldberg, in PostScript™ format. The
file is called floating-point.ps , and can be printed on any PostScript-
compatible printer that has Palatino font. It can be viewed online by using
the imagetool command:

hostname% imagetool floating-point.ps

This paper is also available in the AnswerBook system.

Other Related Documentation

Other reference material includes:

Incremental Link Editor (ild)
Numerical Computation Guide
Performance Profiling Tools

Documents in Hard Copy and in AnswerBook

The following table shows what documents are online, in hard copy, or both:

Table P-4 Documents in Hard Copy and in AnswerBook

Title Hard Copy Online

Pascal User’s Guide X X (AnswerBook)

Pascal Language Reference X X (AnswerBook)

Pascal Quick Reference Card X

Incremental Link Editor (ild) X X (AnswerBook)

Numerical Computation Guide X X (AnswerBook)

Performance Profiling Tools X X (AnswerBook)

pascal [README file] X (CD-ROM)

What Every Scientist Should Know About Floating-Point Arithmetic X (AnswerBook and CD-ROM)

1

Lexical Elements 1

This chapter describes the symbols and words of a Pascal program. It contains
the following sections:

Character Set
Pascal uses the standard seven-bit ASCII character set, and the compiler
distinguishes between uppercase and lowercase characters. For example, the
following seven words are distinct from the predefined type integer :

If you change the case of characters used in a word, the compiler does not
recognize the word and gives an error.

Character Set page 1

Special Symbols page 2

Reserved Words page 3

Identifiers page 4

Comments page 6

Integer INTEGer

INteger INTEGEr

INTeger INTEGER

INTEger

2 Pascal Language Reference

1

The Pascal keywords and built-in procedure and function names are all in
lowercase.

To map all keywords and identifiers to lowercase when you compile your
program, use the following pc options:

See the Pascal 4.2 User’s Guide for a complete description of pc and its options.

Special Symbols
Pascal recognizes the following standard Pascal symbols and the nonstandard
special symbols listed in Table 1-1.

–L Maps all uppercase letters in keywords and identifiers to lowercase.

–s Performs the same action as –L and also produces warning diagnostics
for nonstandard constructs and extensions.

+ - * / = < > [] . , :=
: ; () <> <= >= .. ^

Table 1-1 Nonstandard Special Symbols

Symbol Description Example

~ Bitwise not operator ~ 4

& Bitwise and operator 4 & 3

| Bitwise or operator 4 | 3

! Bitwise or operator 4 ! 3

Specifies an integer value in a base
other than base 10.

p := 2#10111; { base 2 }
f := 8#76543; { base 8 }

Includes a file in the program. #include "globals.h"
#include "math_p.h"

Indicates a preprocessor command #ifdef DEBUGGING
writeln('Total :',i,sum);
#endif

% Indicates a cppas compiler directive %var one, two
%enable two

Lexical Elements 3

1

Reserved Words
Pascal reserves the standard words in Table 1-2. You cannot redefine a
reserved word to represent another item.

Pascal also reserves the nonstandard words in Table 1-3. These words are not
treated as reserved words when you compile your program with any of the –s ,
–s0 , –s1 , –V0 or –V1 options.

Table 1-2 Standard Reserved Words

Pascal Standard Reserved Words

and file mod repeat

array for nil set

begin forward not then

case function of to

const goto or type

div if packed until

do in procedure var

downto label program while

else main record with

4 Pascal Language Reference

1

Identifiers
In Pascal, you can include a dollar sign ($) and underscore (_) in an identifier
name. The $ and _ can occur in any position of the identifier name. However,
you should avoid using these characters in the first position because they may
conflict with system names.

Pascal predeclares the standard identifiers in Table 1-4 and the nonstandard
identifiers in Table 1-5.

Table 1-3 Nonstandard Reserved Words

Pascal Nonstandard Reserved Words

define private

extern public

external static

module univ

otherwise

Table 1-4 Predeclared Standard Identifiers

Pascal Predeclared Standard Identifiers

abs false page sin

arctan get pred sqr

boolean input put sqrt

char integer read succ

chr ln readln text

cos maxint real true

dispose new reset trunc

eof odd rewrite write

eoln ord round writeln

exp output

Lexical Elements 5

1

You can redefine a predeclared identifier to represent another item. For
example, you could redefine the predefined identifier next , a statement that
causes the program to skip to the next iteration of the current loop, as a
variable.

Once you redefine an identifier, you cannot use it as originally defined in the
program, as shown in the following example:

Table 1-5 Predeclared Nonstandard Identifiers

Pascal Predeclared Nonstandard Identifiers

FALSE exit lor seek

TRUE expo lshft shortreal

addr filesize lsl single

alfa firstof lsr sizeof

append flush max stlimit

argc getenv maxchar stradd

argv getfile message string

arshft halt min substr

asl in_range minchar sysclock

asr index minint tab

assert integer16 next tell

bell integer32 null time

card intset open trace

clock land pack trim

close lastof random univ_ptr

concat length remove unpack

date linelimit return varying

discard lnot rshft wallclock

double longreal seed xor

6 Pascal Language Reference

1

Comments
In Pascal, you can specify a comment in either braces, quotation marks, a
parenthesis/asterisk pair, or a slash/asterisk pair:

{ This is a comment. }

(* This is a comment. *)

" This is a comment. "

/* This is a comment. */

The symbols used to delimit a comment must match. For example, a comment
that starts with { must end with } , and a comment that starts with (* must
end with *) .

The Pascal program,
pred_iden.p , redefines the
predeclared identifier next as an
integer variable.

program predefined_identifier;

var
 i: integer;
 next: integer;

begin
 for i := 1 to 10 do begin
 if i > 5 then begin
 next
 end
 end
end. { predefined_identifier }

This program does not compile
because next is declared as a
variable, but used in its original
definition as a statement.

hostname% pc pred_iden.p
Mon Feb 20 15:13:17 1995 pred_iden.p:
 10 next
E 18470-----------------^--- Replaced variable id with a
procedure id
In program predefined_identifier:
E 18250 next improperly used on line 10

Lexical Elements 7

1

You can nest comments in Pascal, that is, include one type of comment
delimiter inside another:

{ This is a valid (* comment within a comment. *) }

(* This is a valid " comment within a comment. " *)

You cannot nest the same kind of comments. The following comments result in
a compile-time error:

{ This is not a valid { comment within a comment. } }

(* This is not a valid (* comment within a comment. *) *)

" This is not a valid " comment within a comment. " "

/* This is not a valid /* comment within a comment. */ */

8 Pascal Language Reference

1

9

Data Types 2

This chapter describes the Pascal data types. Some data types represent
different values when you compile your program with or without the –xl
option, and with or without the –calign option. The intent of the –xl option
is to guarantee binary data compatibility between the operating system and
Apollo MC680x0-based workstations. The intent of the -calign option is to
improve compatibility with C language data structures.

This chapter contains the following sections:

Summary of Data Format Differences page 10

real page 13

Integer page 16

boolean page 20

Character page 22

Enumerated Types page 23

Subrange page 25

Record page 26

Array page 34

Set page 38

File page 41

Pointer page 41

10 Pascal Language Reference

2

Summary of Data Format Differences
A few data formats, particularly of structured types, change when you use the
Pascal compiler -calign option, when you use the -xl option, and when you
use the -calign with the -xl option. This section describes the data
alignments and sizes that change with these options. See the remainder of the
chapter for information on types that do not change when you use these
options.

All simple data types take their natural alignments. For example, real
numbers, being four-byte values, have four-byte alignment. Naturally, no
padding is needed for simple types.

Default Data Alignments and Padding

Here is a summary of the default data alignments and padding.

Records

The alignment of a record is always four bytes. Elements take their natural
alignment, but the total size of a record is always a multiple of four bytes.

Packed Records

Elements of types enumerated, subrange, integer16 , and sets with a cardinal
number less than 32 are bit-aligned in packed records.

Variant Records

The alignment of each variant in a record is the maximum alignment of all
variants.

Arrays

The alignment of a array is equal to the alignment of the elements, and the size
of most arrays is simply the size of each element times the number of elements.
The one exception to this rule is that the arrays of aggregates always have a
size that is a multiple of four bytes.

Data Types 11

2

Sets

Sets have an alignment of four bytes when they are longer than 16 bits;
otherwise, their alignment is two bytes. The size of a set is always a multiple
of two bytes.

Enumerated Types

The size and alignment of enumerated types can be one byte or two,
depending on the number of elements defined for the type.

Subranges

The size and alignment of subrange types varies from one to four bytes,
depending on the number of bits requires for its minimum and maximum
values. See Table 2-7 on page 26 for examples.

Data Formats with -calign

With the -calign option, the data formats are:

Records

The alignment of a record is equal to the alignment of the largest element.

Packed Records

Packed records are the same as the default, except integer elements are not bit-
aligned.

Arrays

The size of all arrays is the size of each element times the number of elements.

Sets

Sets have an alignment of two bytes. The size is the same as the default.

12 Pascal Language Reference

2

Data Formats with -xl

In addition to the structured types discussed below, two simple data types
change their sizes with the -xl option:

• Type real is eight bytes by default; with -xl , it is four bytes.
• Type integer is four bytes by default; with -xl , it is two bytes.

Packed Records

Values of type real have four-byte sizes and alignment. Values of type
integer have a size of two bytes and are bit-aligned.

Enumerated Types

The size and alignment of enumerated types is always two bytes.

Subranges

The size and alignment of subrange types varies from two to four bytes,
depending on the number of bits requires for its minimum and maximum
values. See Table 2-7 for examples.

Data Formats with -calign and -xl

When you use -xl with -calign , alignments and padding are the same as
with -xl alone, with the following differences:

Arrays

Arrays are the same as with -calign alone, except the size of an array of
boolean s is always a multiple of two.

Varying Arrays

Varying arrays have an alignment of four bytes. The size is a multiple of four.

Data Types 13

2

real

Pascal supports the standard predeclared real data type. As extensions to the
standard, Pascal also supports:

• single , shortreal , double , and longreal data types
• real initialization in the variable declaration
• real constants without a digit after the decimal point

real Variables

The minimum and maximum values of the real data types are shown in
Table 2-1.

 This example declares five real variables:

real Initialization

To initialize a real variable when you declare it in the var declaration of your
program, create an assignment statement as follows:

Table 2-1 real Data Types

Type Bits Maximum Value Minimum Value

real (with –xl option) 32 3.402823e+38 1.401298e-45

real (without –xl option) 64 1.79769313486231470e+308 4.94065645841246544e-324

single 32 3.402823e+38 1.401298e-45

shortreal 32 3.402823e+38 1.401298e-45

double 64 1.79769313486231470e+308 4.94065645841246544e-324

longreal 64 1.79769313486231470e+308 4.94065645841246544e-324

var x: real;
y: shortreal;
z: longreal;
weight: single;
volume: double;

14 Pascal Language Reference

2

You can also initialize real variables in the var declaration of a procedure or
function; however, when you do so, you must also declare the variable as
static :

The example in the following section defines six valid real constants, two of
which do not have a digit after the decimal point.

real Constants

Here is an example that of a real constant:

This example initializes the
variable ph to 4.5 and y to
2.71828182845905e+00.

var
ph: single := 4.5;
y: longreal := 2.71828182845905e+00;

This example initializes the
variable sum to 5.0, which
has been declared as
static single .

procedure foo (in x : single;
out y: single);

 var
sum: static single := 5.0;

const
n = 42.57;
n2 = 4E12;
n3 = 567.;
n4 = 83.;
n5 = cos(567.)/2;

n6 = succ(sqrt(5+4));

Data Types 15

2

Data Representation

Pascal represents real , single , shortreal , double , and longreal data
types according to the IEEE standard, A Standard for Binary Floating-Point
Arithmetic. Figure 2-1 shows the representation of a 32-bit floating point
number; Figure 2-2 shows the representation of a 64-bit floating point number.

Figure 2-1 32-Bit Floating-Point Number

Figure 2-2 64-Bit Floating-Point Number

A real number is represented by this form:

(-1) sign * 2 exponent-bias *1.f

f is the bits in the fraction. Extreme exponents are represented as shown in
Table 2-2.

Table 2-2 Representation of Extreme Exponents

Normalized real numbers have an implicit leading bit that provides one more
bit of precision than usual.

Exponent Description

zero (signed) Represented by an exponent of zero and a fraction of zero.

Subnormal number Represented by (-1) sign * 2 1-bias *0.f, where f is the bits in the
significand.

Not a Number (NaN) Represented by the largest value that the exponent an assume
(all ones), and a nonzero fraction.

S
Exponent + 127 Mantissa

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Exponent + 1023 Mantissa

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

16 Pascal Language Reference

2

Table 2-3 shows the hexadecimal representation of several numbers.

Table 2-3 Hexadecimal Representation of Selected Numbers

Integer
Pascal supports the standard predeclared integer data type. As extensions to
the standard, Pascal also supports the integer16 and integer32 data types,
integer initialization in the variable declaration, and integer constants in a base
other than base 10.

Value 32-bit Floating-Point Number 64-bit Floating-Point Number

+0 00000000 0000000000000000

-0 80000000 8000000000000000

+1.0 3F800000 3FF0000000000000

-1.0 BF800000 BFF0000000000000

+2.0 40000000 4000000000000000

+3.0 40400000 4008000000000000

+Infinity 7F800000 7FF0000000000000

-Infinity FF800000 FFF0000000000000

NaN 7Fxxxxxx 7FFxxxxxxxxxxxxx

Data Types 17

2

Integer Variables

Table 2-4 lists the minimum and maximum values of the integer data types.

Table 2-4 Integer Data Types

 This example declares three integer variables:

To define an unsigned integer in Pascal, use a subrange declaration. The
subrange syntax indicates the lower and upper limits of the data type, as
follows:

Type Number of Bits Maximum Value Minimum Value

integer (without
–xl option)

32 2,147,483,647 -2,147,483,648

integer (with
–xl option)

16 32,767 -32,768

integer16 16 32,767 -32,768

integer32 32 2,147,483,647 -2,147,483,648

var
i: integer;
score: integer16;
number: integer32;

This code limits the legal values
for the variable unsigned_int
to 0 through 65536.

type
unsigned_int = 0..65536;

var
u: unsigned_int;

18 Pascal Language Reference

2

Integer Initialization

To initialize integer variables when you declare them in the var declaration
part of your program, put an assignment statement in the declaration, as
follows:

You can also initialize integer variables in the var declaration of a procedure
or function; however, when you do so, you must also declare the variable as
static :

Integer Constants

You define integer constants in Pascal the same as you do as in standard
Pascal.

Here is an example:

This example initializes the
variables a and b to 50 and c to
10000.

 var a, b: integer32 := 50;
c: integer16 := 10000;

This code initializes the variable
sum to 50, which has been
declared as static
integer16.

procedure show (in x : integer16;
out y: integer16);

 var
sum: static integer16 := 50;

const
x = 10;
y = 15;
n1 = sqr(x);
n2 = trunc((x+y)/2);
n3 = arshft(8, 1);

Data Types 19

2

maxint and minint

The value Pascal assigns to the integer constants maxint and minint is
shown in Table 2-5.

Table 2-5 Values for maxint and minint

In Another Base

To specify an integer constant in another base, use the following format:

base#number

base is an integer from 2 to 36. number is a value in that base. To express
number, use the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and then use the letters a to z.
Case is insignificant; a is equivalent to A.

You can optionally put a positive sign (+) or negative sign (-) before base. The
sign applies to the entire number, not the base.

Data Representation

Pascal represents integer , integer16 , and integer32 data types in twos
complement format. Figure 2-3 shows the representation of a 16-bit integer.
Similarly, Figure 2-4 shows the representation of a 32-bit integer.

Without -xl With -xl

Constant Bits Value Bits Value

maxint 32 2,147,483,647 16 32,767

minint 32 -2,147,483,648 16 -32,768

This code specifies integers in
binary, octal, and hexadecimal
notation.

power := 2#10111; (* binary (base 2) *)
fraction_of_c := -8#76543; (* octal (base 8) *)
percentage := +16#fd9c; (* hexadecimal (base 16) *)

20 Pascal Language Reference

2

Figure 2-3 16-Bit Integer

Figure 2-4 32-Bit Integer

boolean

Pascal supports the standard predeclared data type boolean . As an extension
to the standard, Pascal permits you to initialize boolean variables in the
variable declaration.

boolean Variables

In Pascal, you declare boolean variables the same as in standard Pascal. Both
of the following are valid boolean variables:

boolean Initialization

To initialize a boolean variable when you declare it in the var declaration of
your program, use an assignment statement, as follows:

This example declares the
variables cloudy and sunny as
boolean .

 var
cloudy: boolean;
sunny: boolean;

This example initializes cloudy
to true and sunny to false .

var
cloudy: boolean := true;
sunny: boolean := false;

Byte 0 Byte 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 0 Byte 1 Byte 2 Byte 3

Data Types 21

2

You can also initialize boolean variables in the var declaration of a procedure
or function; however, when you do so, you must also declare the variable as
static :

boolean Constants

You declare boolean constants in Pascal the same as in standard Pascal.
Three valid boolean constants follow:

Data Representation

Pascal allocates one byte for each boolean variable. Figure 2-5 shows how
Pascal internally represents a true boolean variable; Figure 2-6 shows how
Pascal represents a false boolean variable.

Figure 2-5 true boolean Variable

This code initializes the variable
rainy to false , which has
been declared as static
boolean .

function weather (x: integer): boolean;

var
rainy: static boolean := false;

This example declares the
constants a as true and b as
false . It also declares n as the
value odd(y) .

const
a = true;
b = false;
y = 15;
n = odd(y);

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1

22 Pascal Language Reference

2

Figure 2-6 false boolean Variable

Character
Pascal supports the standard predeclared data type char . As extensions to the
standard, Pascal supports character initialization in the variable declaration
and four nonstandard character constants.

Character Variables

You declare character variables in Pascal the same as you do in standard
Pascal. Each of the following is a valid character variable:

Character Initialization

To initialize a character variable when you declare it in the var declaration of
your program, create an assignment statement, as follows:

var
current_character: char;
largest: char;
smallest: char;

This example initializes the
variable pass to A and fail to F.

var
pass: char := 'A';
fail: char := 'F';

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

Data Types 23

2

You can also initialize character variables in the var declaration of a procedure
or function; however, when you do so, you must also declare the variable as
static :

Character Constants

Pascal extends the standard definition of character constants by predeclaring
the four character constants in Table 2-6.

Table 2-6 Nonstandard Predeclared Character Constants

Data Representation

Pascal allocates one byte for each character variable.

Enumerated Types
Pascal supports enumerated data types with extensions that allow you to input
enumerated types with the read and readln procedures and output them
with the write and writeln procedures. See the listings on read and write
in Chapter 7, “Input and Output,” for details.

This example initializes the
variable grade1 to A, grade2 to
B, and grade3 to C. All three
variables are declared as
static char .

procedure grades;
var

grade1: static char := 'A';
grade2: static char := 'B';
grade3: static char := 'C';

Constant Description

minchar Equal to char(0)

maxchar Equal to char(255)

bell Equal to char(7) (which makes your terminal beep)

tab Equal to char(9) (which makes a tab character)

24 Pascal Language Reference

2

Enumerated Variables

You declare enumerated data types in Pascal the same as in standard Pascal.

Data Representation

When you compile your program without the –xl option, Pascal represents
enumerated types as either 8 or 16 bits, depending on the number of elements
defined for that type. With -xl , Pascal represents variables of enumerated
type as 16 bits. Pascal stores enumerated types as integers corresponding to
their ordinal value.

Figure 2-7 shows the representation of a 16-bit enumerated variable.

Figure 2-7 16-Bit Enumerated Variable

As an example, suppose you defined a group of colors, as follows:

colors = (red, green, blue, orange);

Pascal represents each value as shown in Figure 2-8.

type
continents =(North_America, South_America,
 Asia, Europe, Africa, Australia,
 Antartica);
gem_cuts = (marquis, emerald, round, pear_shaped);

var
x: gem_cuts;
index: continents;

Byte 0 Byte 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Types 25

2

Figure 2-8 Sample Enumerated Representation

Subrange
Pascal supports a subrange of integer, boolean , character, and enumerated
data types.

The Pascal subrange type is extended to allow constant expressions in both the
lower and upper bound of the subrange. The lower bound expression is
restricted by requiring that the expression not begin with a left parenthesis.

 Subrange Variables

See “Integer Variables” on page 17 for an example of a subrange declaration.

 Data Representation

The Pascal subrange takes up the number of bits required for its minimum and
maximum values. Table 2-7 shows the space allocation of six subranges.

 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

Red

 0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0

Green

 0 0 0 0 0 0 1 0

7 6 5 4 3 2 1 0

Blue

 0 0 0 0 0 0 1 1

7 6 5 4 3 2 1 0

Orange

26 Pascal Language Reference

2

Table 2-7 Subrange Data Representation

Figure 2-9 shows how Pascal represents a 16-bit subrange. Similarly,
Figure 2-10 shows how Pascal represents a 32-bit subrange.

Figure 2-9 16-Bit Subrange

Figure 2-10 32-Bit Subrange

Record
Pascal supports the standard record and packed record data types. As an
extension, Pascal permits you to initialize a record variable when you declare it
in the variable declaration.

Minimum/Maximum Range Without –xl (Bits) With –xl (Bits)

0..127 8 16

-128..127 8 16

0..255 16 16

-32768..32767 16 16

0...65536 32 32

-2,147,483,648..2,147,483,647 32 32

Byte 0 Byte 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 0 Byte 1 Byte 2 Byte 3

Data Types 27

2

Record Variables

You declare records in Pascal the same as in standard Pascal, as shown in the
following example:

Record Initialization

To initialize a field in a record when you declare it in the var declaration of
your program, use either of the following two formats:

• Specify the record field name followed by an assignment operator and
initial value.

• List the initial value without the field name. In this case, Pascal assigns the
initial value to the next field name in the record definition.

type
MonthType = (Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec);
DateType = record

Month : MonthType;
Day : 1..31;
Year : 1900..2000;

end;

Appointment = record
Date : DateType;
Hour : 0..2400;

end;

 [a := FALSE ,
 b := TRUE]

[FALSE ,
TRUE]

28 Pascal Language Reference

2

You can also initialize record variables in the var declaration of a procedure or
function; however, when you do so, you must also declare the variable as
static .

Initializing Record Variables (Screen 1 of 2)

The Pascal program,
init_rec.p . This example
shows a record initialization by
name, by position, and by name
and position.

program init_rec(output);

{ This program initializes a record. }

type
 enumerated_type = (red, green, blue, orange, white);
 record_type =
 record
 c: char;
 st: set of char;
 z: array [1..10] of char;
 case colors: enumerated_type of
 red: (b: boolean;
 s: single);
 green: (i16: integer16;
 d: double)
 end;
var
 { Initialization by name. }
 rec1: record_type :=
 [st := ['a', 'b', 'c'],
 c := 'A',
 z := 'ARRAY1',
 colors := green,
 i16 := 32767];

Data Types 29

2

Initializing Record Variables (Screen 2 of 2)

 { Initialization by position. }
 rec2: record_type :=
 ['X',
 ['x', 'y', 'z'],
 'ARRAY2',
 red,
 true];
 { Initialization by name and position. }
 rec3: record_type :=
 [colors := red,
 true,
 1.16,
 st := ['m', 'n', 'o'],
 'ARRAY3'];

begin
 writeln('char ', rec1.c);
 writeln('char array ', rec1.z);
 writeln('integer ', rec1.i16);
 writeln;
 writeln('char ', rec2.c);
 writeln('char array ', rec2.z);
 writeln('boolean ', rec2.b);
 writeln;
 writeln('char array ', rec3.z);
 writeln('boolean ', rec3.b);
 writeln('single ', rec3.s)
end. { record_example }

30 Pascal Language Reference

2

Data Representation of Unpacked Records

This section describes the data representations of unpacked fixed and variant
records.

Fixed Records

Pascal allocates fields in a fixed record so that they assume the natural
alignment of the field type. The alignment of a record is equal to the alignment
of the largest element. The size of the record is a multiple of the alignment.

Variant Records

The space Pascal allocates for a variant record is the same with or without the
–xl option.

Data Representation of Packed Records

Table 2-8, Table 2-9, and Table 2-10 show how Pascal aligns fields in a packed
record.

Note – In packed records, bit-aligned fields do not cross word boundaries.

The commands to compile and
execute init_rec.p

hostname% pc init_rec.p
hostname% a.out
char A
char array ARRAY1
integer 32767

char X
char array ARRAY2
boolean true

char array ARRAY3
boolean true
single 1.160000e+00

Data Types 31

2

Packed Record Storage Without the -xl Option

Table 2-8 Packed Record Storage Without –xl

Data Type Size Alignment

integer 4 bytes 4 bytes

integer16 2 bytes Bit-aligned

integer32 4 bytes 4 bytes

real 8 bytes 8 bytes

single 4 bytes 4 bytes

shortreal 4 bytes 4 bytes

double 8 bytes 8 bytes

longreal 8 bytes 8 bytes

boolean 1 bit Bit-aligned

char 1 byte 1 byte

enumerated Number of bits required to
represent the highest ordinal value

Bit-aligned

subrange of char 1 byte 1 byte

all other subrange Number of bits required to
represent the highest ordinal value

Bit-aligned

set of cardinality <= 32 One bit per element Bit-aligned

set of cardinality > 32 Same as if unpacked 4 bytes

array Requires the same space required
by the base type of the array

Same as element type

32 Pascal Language Reference

2

Packed Record Storage with the -xl Option
Table 2-9 Packed Record Storage with –xl

Packed Record Storage with the -calign Option
Table 2-10 Packed Record Storage with -calign

The following example declares a packed record. Table 2-11 shows the
alignment and sizes of the fields of the record. Figure 2-11 shows the
representation of this record.

Data Type Size Alignment

real 4 bytes 4 bytes

integer 2 bytes Bit-aligned

Data Type Size Alignment

integer16 2 bytes 2 bytes

type
small = 0..128;
medium = 0..255;
large = 0..65535;
colors = (green, blue, orange, white, black, magenta, gray);
sets = (autumn, summer, winter, fall);
vrec1 = packed record

a: integer16;
b: boolean;
e: colors;
sm: small;
med: medium;
lg: large;
se: sets;
x: integer32;

end;

Data Types 33

2

Table 2-11 Sample Sizes and Alignment of Packed Record

Figure 2-11 Sample Packed Record (Without -xl)

Field Size (Bits) Alignment

a 16 16 bit-aligned

b 1 Bit-aligned

e 3 Bit-aligned

sm 8 Bit-aligned

med 16 Bit-aligned

lg (without -xl) 32 32 bit-aligned

lg (with -xl) 16 16 bit-aligned

se 4 Bit-aligned

x 32 32 bit-aligned

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

a

b e sm

med

lg

med

lg se

x

x

34 Pascal Language Reference

2

Array
Pascal supports the standard array data type. As extensions to the standard,
Pascal supplies the predeclared character array types alfa , string , and
varying and permits you to initialize an array variable when you declare it in
the variable declaration.

Array Variables

In addition to the standard array data types, this compiler supports the three
data types in Table 2-12, which include a variable-length string.

Table 2-12 Array Data Types

You can assign a variable-length string a string of any length, up to the
maximum length you specify in the declaration. Pascal ignores any characters
you specify over the maximum. It does not pad the unassigned elements with
spaces if you specify a string under the maximum. When you output a
variable-length string with write or writeln , the procedure writes only the
characters included in the string’s current length.

You also can assign a variable-length string to a fixed-length string. If the
variable-length string is shorter than the fixed-length string, the fixed-length
string is padded with blanks. If the variable-length string is longer than the
fixed-length string, the string is truncated.

Type Description

alfa An array of char 10 characters long.

string An array of char 80 characters long.

varying A string of variable length. You declare a varying string as follows:
varying [upper_bound] of char ; upper_bound is an integer
between 0 and 65,535

Data Types 35

2

The following program demonstrates the differences between the fixed-length
and varying data types:

The Pascal program, varying.p program varying_example(output);

{ This program demonstrates the differences
 between fixed- and variable-length strings. }

var
name1: array [1..25] of char; { String of size 25. }
name2: array [76..100] of char; { String of size 25. }
name3: alfa; { String of size 10. }
name4: string; { String of size 80. }
name5: varying [25] of char; { Varying string. }
name6: varying [25] of char; { Varying string. }

begin
name1 := 'van Gogh';
name2 := 'Monet';
name3 := 'Rembrandt';
name4 := 'Breughel';
name5 := 'Matisse';
name6 := 'Cezanne';
writeln(name1, ' and ', name2, '.');
writeln(name3, ' and ', name4, '.');
writeln(name5, ' and ', name6, '.')

end. { varying_example }

The commands to compile and
execute varying.p

hostname% pc varying.p
hostname% a.out
van Gogh and Monet .
Rembrandt and
Breughel .
Matisse and Cezanne.

36 Pascal Language Reference

2

Array Initialization

To initialize an array variable when you declare it in the var declaration of
your main program, use an assignment statement after the declaration. Pascal
offers you the following four different formats:

• Supply the lower and upper bounds in the initialization.

• Put an asterisk in place of the upper bound, and let the compiler determine
the upper bound once it counts the initial values. You can use this format
only when you also supply the initial values.

• Use the repeat count feature n of constant to initialize n array elements to
the value constant. n must be an integer or an expression that evaluates to
an integer constant.

This code initializes the first five
elements of int to maxint ,
 1, -32767, 5, and 20. The first six
elements of c1 are assigned the
characters 1 through 6. Because
c1 is a fixed-length string, the last
four characters are padded with
blanks.

var
int : array[1..10] of integer := [maxint, 1 , -327 , 5, 20];
c1 : array[1..10] of char := '123456';

In this example, the compiler
assigns the upper bound of 5 to
int and of 6 to c1 .

var
i : integer;
int : array[1..*] of integer := [maxint , 1, -32767, 5 , 20];
c1 : array[1..*] of char := '123456';

This code initializes all the first 50
values of int2 to 1 and the
second 50 values to 2.

var
int2 : array[1..100] of integer := [50 of 1 , 50 of 2];

Data Types 37

2

• Use the repeat count feature * of constant to initialize all remaining array
elements to the value of constant.

When you initialize an array in the var declaration, the compiler sets those
elements for which it doesn’t find data to zero.

You can also initialize array variables in the var declaration of a procedure or
function; however, you must also declare the variable as static .

Packed Arrays

Although you can define an array as packed , it has no effect on how the
Pascal compiler allocates the array data space.

Data Representation

The elements of an array require the same space as that required by the base
type of the array. However, there are two exceptions to this. With the
-calign option, the size of all arrays is the size of each element times the
number of elements. When you use the -calign and -xl options together,
arrays are the same as with -calign alone, except the size of an array of
boolean s is always a multiple of two.

This example initializes all 100
elements of int4 to 327 . The
example also initializes the
multidimensional array int5 to
an array of 10 rows and columns.
The compiler initializes all 10
elements in the first row to 327 ,
the first three elements of the
second row to 8, and all 10
elements of the third row to 88 .

var
int4 : array[1..100] of integer := [* of 327];
int5 : array[1..10,1..10] of integer := [

[* of 327],
[3 of 8],
[10 of 88],

];

38 Pascal Language Reference

2

Set
Pascal supports sets of elements of integer, boolean , character, and
enumerated data types. As extensions to the standard, Pascal predefines a set
of intset ; you can then initialize a set variable when you declare it in the var
declaration of your program.

Set Variables

In Pascal, you declare set variables the same as you do in standard Pascal. The
following is a valid set variable:

Pascal predefines the set intset as the set of [0..127].

Set Initialization

To initialize a set variable when you declare it in the var declaration of your
program, create an assignment statement, as follows:

type
character_set = set of char;

var
letters: character_set;

This code initializes citrus
to the set of orange , lemon ,
and lime .

type
fruit = (orange, lemon, lime, apple, banana);

var
citrus: set of fruit := [orange, lemon, lime];

Data Types 39

2

You can also initialize set variables in the var declaration of a procedure or
function; however, when you do so, you must also declare the variable as
static :

Packed Sets

Although you can define a set as packed , it has no effect on how the compiler
allocates the set data space.

Data Representation

Pascal implements sets as bit vectors, with one bit representing each element of
a set. The maximum ordinal value of a set element is 32,768.

The size of a set is determined by the size of the ordinal value of maximal
element of the set plus one. Sets are allocated in multiples of 16 bits; therefore,
the smallest set has size 16 bits. The ordinal value of the minimal element
must be equal to or greater than 0. Sets have an alignment of four bytes when
they are longer than 16 bits; otherwise their alignment is two bytes. For
example, 'set of 1..20' has a four-byte alignment and 'set of 1..15' has a two-byte
alignment.

With the -calign option, sets have an alignment of two bytes. The size is the
same as the default.

This example initializes primary
to the set of red , yellow , and
blue . It also initializes grays to
the set of white and black .

procedure assign_colors;
type

colors = (white, beige, black, red, blue,
yellow, green);

var
primary: static set of colors := [red, yellow,

blue];
grays: static set of colors := [white, black];

40 Pascal Language Reference

2

Table 2-13 shows the data representation of four sets.

Table 2-13 Data Representation of Sets

You can visualize the bit vector representation of a set as an array of bits
starting from the highest element to the lowest element. For example, the
representation of the following set is shown in Figure 2-12.

Figure 2-12 Small Set

Set Description

set of 0..15 This set requires 16 bits because 15 is the maximal element, and
15 + 1 = 16.

set of 0..16 This set requires 32 bits because 16 is the maximal element. 16 + 1 = 17,
and the next multiple of 16 above 17 is 32.

set of 14..15 This set requires 16 bits because 15 is the element, and 15 + 1 = 16.

set of char This set requires 256 bits because the range of char is
chr(0)..chr(255) . The ordinal value of the maximal element is 255,
and 255+1 = 256, which is divisible by 16.

var
smallset: set of 2..15 := [7,4,3,2];

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0

Data Types 41

2

The representation of this larger set is shown in Figure 2-13.

Figure 2-13 Large Set

File
Pascal treats files declared as file of char the same as files declared as
text , except when you use the –s –s0 , –s1 , –V0, or –V1 options. In this case,
the compiler treats the two data types differently, as required by standard
Pascal.

Pointer
Pascal supports the standard Pascal pointer and the nonstandard universal
pointer and procedure and function pointer.

Standard Pointer

The standard pointer is the same in Pascal and standard Pascal.

var
largeset: set of 2..255 := [7,4,3,2];

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

255 247 239 231 224

Loc +1Loc +0Loc +1

42 Pascal Language Reference

2

Universal Pointer

The universal pointer data type, univ_ptr , is compatible with any pointer
type. Use univ_ptr to compare a pointer of one type to another, to assign a
pointer of one type to another, or to weaken type checking when passing
parameters of pointer types.

When the type of a formal parameter is univ_ptr , the type of the
corresponding actual parameter can be of any pointer type, or vice versa.

You cannot dereference a univ_ptr variable: you cannot find the contents of
the address to which univ_ptr points.

The Pascal program,
univ_ptr.p , which prints the
value of the floating-point variable
r in hexadecimal format.

program univ_ptr_example;

{ This program demonstrates how to use
 universal pointers. }

var
 i: integer32;
 r: single;
 ip: ^ integer32;
 rp: ^ single := addr(r);
 up: univ_ptr;

begin
 r := 10.0;
 { The next two statements are equivalent to rp := ip.
 However, rp := ip is not legal since they are
 different types. }
 up := rp;
 ip := up;
 writeln(ip^ hex);
 { This will do the same thing but uses transfer functions. }
 writeln(integer32(r) hex)
end. { univ_ptr_example }

Data Types 43

2

Procedure and Function Pointers

The following is an example that shows how to use procedure and function
pointers in Pascal.

The commands to compile and
execute univ_ptr.p

hostname% pc univ_ptr.p
hostname% a.out
41200000
41200000

44 Pascal Language Reference

2

The Pascal program, pointer.p ,
which demonstrates how to print
out enumerated values using
procedure pointers.

program pointer_example;

type
 colors = (red, white, blue);
 procptr = ^ procedure; { Procedure pointer type. }

procedure printred;

begin
 writeln('RED')
end; { printred }

procedure printwhite;

begin
 writeln('WHITE')
end; { printwhite }

procedure printblue;

begin
 writeln('BLUE')
end; { printblue }

var
 { Array of procedure pointers. }
 colorprinter: array [colors] of procptr :=
 [addr(printred),
 addr(printwhite),
 addr(printblue)];
 c: colors;
 desc_proc: procptr;

begin
 write('Enter red, white, or blue: ');
 readln(c);
 desc_proc := colorprinter[c];
 desc_proc^
end. { pointer_example }

Data Types 45

2

Pointer Initialization

To initialize a pointer variable when you declare it in the var declaration of
your program, use an assignment statement, as follows:

You can also initialize pointer variables in the var declaration of a procedure
or function; however, when you do so, you must also declare the variable as
static .

Data Representation

Pascal represents a pointer as shown in Figure 2-14.

Figure 2-14 Pointer

The commands to compile and
execute pointer.p

hostname% pc pointer.p
hostname% a.out
Enter red, white, or blue: red
RED

This example initializes the
variable rp to addr(r) . Legal
values for compile-time
initializations are NIL , addr(0)
of variables, procedures, strings,
and set constants, and
previously declared constants of
the same pointer type.

 var
rp : ^single := addr(r);
pp : ^procedure := NIL;
sp : ^string := addr('Title');

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address

46 Pascal Language Reference

2

47

Statements 3

This chapter describes Pascal statements in the following sections:

Standard Statements
Pascal supports all standard statements. Pascal also supports extensions to:

Statements Specific to Pascal
Table 3-1 summarizes the nonstandard Pascal statements and standard
statements with nonstandard features. Detailed descriptions and examples of
each statement follow.

Standard Statements page 47

Statements Specific to Pascal page 47

assert next

case otherwise

exit return

goto with

48 Pascal Language Reference

3

Table 3-1 Nonstandard Pascal Statements

assert Statement

The assert statement causes a boolean expression to be evaluated each time
the statement is executed.

If your program contains an assert statement, you must compile it with the
–C option, which enables runtime tests. Otherwise, the compiler treats
assert as a comment.

A runtime error results if the expression in the assert statement evaluates to
false .

assert is a shorthand for using the if statement.

Statement Description

assert Causes a boolean expression to be evaluated each time the
statement is executed.

case Accepts ranges of constants and an otherwise statement.

exit Transfers program control to the first statement after the end of a
for , while , or repeat loop.

goto Accepts an identifier as the target of goto .

next Causes the program to skip to the next iteration of the enclosing for ,
while , or repeat loop.

otherwise An extension to the case statement. If the expression in a case
statement does not match any of the case values, the compiler
executes the statements under the otherwise statement.

return Prematurely ends a procedure or a function.

with An alternative format to the standard with statement.

Statements 49

3

For example, the following code uses an assert statement to test whether num
is greater than 0 and less than or equal to MAX_STUDENTS:

The following if statement is equivalent to the assert statement in the
preceding program:

assert((num > 0) and (num <= MAX_STUDENTS));
for i := 1 to num do begin

write('Enter grade for student ', i: 3, ': ');
readln(grades[i])

end.

if (num > 0) and (num <= MAX_STUDENTS) then begin
for i := 1 to num do begin

write('Enter grade for student ', i: 3, ': ');
readln(grades[i])

end
end else begin

writeln('Error message.');
halt

end

50 Pascal Language Reference

3

The Pascal program,
assert.p , which tests whether
num is greater than 0 and less
than or equal to MAX_STUDENTS
before reading in the grades.

program assert_example;

const
 MAX_STUDENTS = 4;

var
 num: integer;
 i: integer;
 grades: array [1..MAX_STUDENTS] of char;

begin
 num := 6;
 assert((num > 0) and (num <= MAX_STUDENTS));
 for i := 1 to num do begin
 write('Enter grade for student ', i: 3, ': ');
 readln(grades[i])
 end
end. { assert_example }

The commands to compile and
execute assert.p without the
–C option. The compiler treats
assert as a comment.

hostname% pc assert.p
hostname% a.out
Enter grade for student 1: A
Enter grade for student 2: B
Enter grade for student 3: C
Enter grade for student 4: D
Enter grade for student 5: F
Enter grade for student 6: A

Statements 51

3

case Statement

Pascal supports the standard case statement with extensions for an
otherwise clause and ranges of constants.

If expression does not match any of the case values, the compiler executes the
otherwise statement list. The reserved word otherwise is not a case label,
so it is not followed by a colon (:). Also, the begin/end pair is optional in an
otherwise statement.

You can use a range of constants instead of a single case value. A case range
must be in ascending order.

The case statement operates differently when you compile your program with
and without the –xl option. Without –xl , if the value of the expression is not
equal to one of the case labels and you omit the otherwise statement, the
program generates an error and halts.

If this situation occurs and you compile your program with –xl , the program
falls through and does not generate an error; program execution continues
with the statement immediately following the case statement.

The result when you compile
assert.p with the –C and –g
option. The expression evaluates
to false , so the compiler
generates an error and halts.

hostname% pc -C assert.p
hostname% a.out

Assertion #1 failed
Trace/BPT trap (core dumped)

hostname% pc -C -g assert.p
hostname% a.out

Assertion #1 failed
Trace/BPT trap (core dumped)

52 Pascal Language Reference

3

exit Statement

The exit statement, which you can use in a for , while , or repeat loop,
transfers program control to the first statement after the end of the current
loop.

If used in a nested loop, exit only breaks out of the innermost loop.

You receive a compile-time error if you use this statement anywhere but in a
for , while , or repeat loop.

The Pascal program,
otherwise.p , which reads a
character from the terminal. If the
value of the character is not in the
range 0 - 9, the compiler executes
the statement in the otherwise
statement. The program specifies
all digits between 0 and 9 as the
range '0'..'9' .

program otherwise_example(input, output);

{ This program demonstrates the otherwise
 clause and ranges in the case statement. }

var
 ch: char;

begin
 write('Please enter one character: ');

{More than one character will produce erroneous results.}
 readln(ch);
 case ch of
 '0'..'9':
 writeln('The character you input is a digit.');
 otherwise
 writeln('The character you input is not a digit.')
 end
end. { otherwise_example }

The commands to compile and
execute otherwise.p without
–xl . This example shows your
output when you input the
characters 3 and B.

hostname% pc otherwise.p
hostname% a.out
Please enter one character: 3
The character you input is a digit.
hostname% a.out
Please enter one character: B
The character you input is not a digit.

Statements 53

3

The Pascal program, exit.p program exit_example(input, output);

{ This program demonstrates the use of the
 exit statement in for, while, and repeat loops. }

const
 MAX = 10;

type
 integer_type = array [1..MAX] of integer16;

var
 i: integer16;
 i_array: integer_type := [1, 99, 13, 45, 69, 18, 32, -6];
 number: integer16;
 flag: boolean := false;

begin
 write('Enter a number: ');
 readln(number);
 for i := 1 to MAX do begin
 if number = i_array[i] then begin
 flag := true;
 exit
 end
 end;
 if flag then
 writeln('Number WAS found: ', number)
 else
 writeln('Number WAS NOT found: ', number)
end. { exit_example }

The commands to compile and
execute exit.p . This example
shows the program output when
you input the number 13 .

hostname% pc exit.p
hostname% a.out
Enter a number: 13
Number WAS found: 13

54 Pascal Language Reference

3

goto Statement

Pascal supports the standard format of the goto statement with two
extensions.

In Pascal, you can use an identifier as the target of a goto . Standard Pascal
allows only integers as targets of goto s.

If you use a goto to jump out of the current block, Pascal closes all open files
in the intervening blocks between the goto statement and the target of the
goto .

Statements 55

3

Identifiers as Targets (Screen 1 of 2)

The Pascal program, goto.p ,
which uses an identifier as a
target of a goto statement.

program goto_example;

{ This program uses an identifier as a target
 of a goto statement. }

label
 skip_subtotal;

const
 MAX_STUDENTS = 100;

var
 i: integer;
 grades: array [1..MAX_STUDENTS] of char;
 num: 1..MAX_STUDENTS;
 sum: real;
 points: real;

begin
 { Read in number of students and their grades. }
 write('Enter number of students: ');
 readln(num);
 assert((num > 0) and (num < MAX_STUDENTS));
 for i := 1 to num do begin
 write('Enter grade for student ', i: 3, ': ');
 readln(grades[i])
 end;
 writeln;
 { Now calculate the average GPA for all students. }
 sum := 0;
 for i := 1 to num do begin
 if grades[i] = 'I' then begin
 goto skip_subtotal
 end else begin
 case grades[i] of
 'A': points := 4.0;
 'B': points := 3.0;
 'C': points := 2.0;
 'D': points := 1.0;
 'F': points := 0.0;

56 Pascal Language Reference

3

Identifiers as Targets (Screen 2 of 2)

next Statement

The next statement, which you can only use in a for , while , or repeat loop,
causes the program to skip to the next iteration of the current loop, thus
skipping the rest of the statements in the loop.

The next statement has the same effect as a goto to the end of the loop. If
you use next in a for loop, Pascal increments the index variable as normal.

When you use next in a nested loop, it goes to the end of the innermost loop
containing the next statement.

You receive a compile-time error if you use this statement anywhere but in a
for , while , or repeat loop.

otherwise
 writeln('Unknown grade: ', grades[i]);
 points := 0.0
 end
 end;
 sum := sum + points;
 skip_subtotal:
 end;
 writeln('GPA for all students is ', sum / num: 6: 2, '.')
end. { goto_example }

You must compile goto.p with
the –C option to execute the
assert statement; otherwise,
the compiler treats assert as a
comment. This example returns
the collective GPA of four
students.

hostname% pc -C goto.p
hostname% a.out
Enter number of students: 4
Enter grade for student 1: B
Enter grade for student 2: B
Enter grade for student 3: C
Enter grade for student 4: A

GPA for all students is 3.00.

Statements 57

3

The next Statement (Screen 1 of 2)

The Pascal program, next.p ,
which also uses the otherwise
statement.

program next_example;

{ This program demonstrates the use of the next
 statement in for, while, and repeat loops. }

const
 MAX_STUDENTS = 100;

var
 i: integer;
 grades: array [1..MAX_STUDENTS] of char;
 num: 1..MAX_STUDENTS;
 sum: real;
 points: real;

begin
 { Read in number of students and their grades. }
 write('Enter number of students: ');
 readln(num);
 assert((num > 0) and (num <= MAX_STUDENTS));
 for i := 1 to num do begin
 write('Enter grade for student ', i: 3, ': ');
 readln(grades[i])
 end;
 writeln;

58 Pascal Language Reference

3

The next Statement (Screen 2 of 2)

otherwise Statement

The otherwise statement is a Pascal extension to the standard Pascal case
statement. If specified, otherwise must be at the end of the case statement.
See the listing in “case Statement” on page 51 for additional information.

 { Now calculate the average GPA for all students. }
 sum := 0;
 for i := 1 to num do begin
 if grades[i] = 'I' then begin
 next
 end else begin
 case grades[i] of
 'A': points := 4.0;
 'B': points := 3.0;
 'C': points := 2.0;
 'D': points := 1.0;
 'F': points := 0.0;
 otherwise
 writeln('Unknown grade: ', grades[i]);
 points := 0.0

end
 end;
 sum := sum + points
 end;
 writeln('GPA for all students is: ', sum / num: 6: 2)
end. { next_example }

You must compile next.p with
the –C option to execute the
assert statement; otherwise,
the compiler treats assert as a
comment. This example outputs
the collective GPA of three
students.

hostname% pc -C next.p
hostname% a.out
Enter number of students: 3
Enter grade for student 1: A
Enter grade for student 2: A
Enter grade for student 3: C

GPA for all students is: 3.33

Statements 59

3

return Statement

The return statement prematurely ends a procedure or a function.

Program control transfers to the calling routine. This has the same effect as a
goto to the end of the routine. If used in the main program, return causes
the program to terminate.

The Pascal program, return.p .
The compiler prematurely
returns from the procedure test
if you input 1 or any integer from
4 through 99. The program also
uses identifiers as the target of a
goto .

program return_example;

{ This program demonstrates the use of the
 return statement in a procedure. }

var
 i: integer;

procedure test;
label
 error_negative_value, error_bad_values, error_value_too_big;
begin
 if i < 0 then
 goto error_negative_value
 else if (i = 2) or (i = 3) then
 goto error_bad_values
 else if i > 100 then
 goto error_value_too_big;
 return;
error_negative_value:
 writeln('Value of i must be greater than 0.');
 return;
error_bad_values:
 writeln('Illegal value of i: 2 or 3.');
 return;
error_value_too_big:
 writeln('Value of i too large.');
 return
end; { test }

begin { main procedure }
 write('Enter value for i: ');
 readln(i);
 test
end. { return_example }

60 Pascal Language Reference

3

with Statement

Pascal supports the standard with statement plus an alternative format.

The following is an example that illustrates how to use a with statement in
Pascal.

The commands to compile and
execute return.p

hostname% pc return.p
hostname% a.out
Enter value for i: -1
Value of i must be greater than 0.
hostname% a.out
Enter value for i: 2
Illegal value of i: 2 or 3.
hostname% a.out
Enter value for i: 101
Value of i too large.
hostname% a.out
Enter value for i: 5

Statements 61

3

The Pascal program, with.p ,
which uses the alternate form of
the with statement.

program with_example(output);

{ Sample program using the extension to the
 with statement. }

const
 MAX = 12;

type
 name_type = varying [MAX] of char;
 Patient =
 record
 LastName: name_type;
 FirstName: name_type;
 Sex: (Male, Female)
 end;

var
 new_patient: Patient;
 old_patient: Patient;

begin
 with new_patient: new, old_patient: old do begin
 new.LastName := 'Smith';
 new.FirstName := 'Abby';
 new.Sex := Female;

 old.LastName := 'Brown';
 old.FirstName := 'Henry';
 old.Sex := Male
 end;
 write('The new patient is ');
 write(new_patient.FirstName: 10);
 writeln(new_patient.LastName: 10, '.');
 write('The old patient is ');
 write(old_patient.FirstName: 10);
 writeln(old_patient.LastName: 10, '.')
end. { with_example }

62 Pascal Language Reference

3

The commands to compile and
execute with.p

hostname% pc with.p
hostname% a.out
The new patient is Abby Smith.
The old patient is Henry Brown.

63

Assignments and Operators 4

This chapter describes the different types of assignments and operators in
Pascal. It contains the following sections:

Data Type Assignments and Compatibility
Table 4-1 lists the assignment compatibility rules for real , integer ,
boolean , character, enumerated, subrange, record, set, and pointer data types.

Data Type Assignments and Compatibility page 63

String Assignments page 64

Operators page 66

Precedence of Operators page 76

64 Pascal Language Reference

4

Table 4-1 Data Type Assignment

† Pascal implicitly converts the integer to the real type, if necessary.

String Assignments
Pascal has special rules for assigning fixed- and variable-length strings, null
strings, and string constants.

Fixed- and Variable-Length Strings

When you make an assignment to a fixed-length string, and the source string is
shorter than the destination string, the compiler pads the destination string
with blanks. If the source string is larger than the destination string, the
compiler truncates the source string to fit the destination.

When you make an assignment to a variable-length string, and the source
string is longer than the destination string, the compiler truncates the source to
fit the destination.

The valid fixed- and variable-length string assignments are given in Table 4-2.

Type of Variable/Parameter Type of Assignment-Compatible Expression

real , single , shortreal real , single , shortreal , double , longreal ,
any integer type†

double , longreal real , single , shortreal , double , longreal ,
any integer type

integer , integer16,integer32 integer , integer16,integer32

boolean boolean

char char

enumerated Same enumerated type

subrange Base type of the subrange

record Record of the same type

array Array with the same type

set Set with compatible base type

pointer Pointer to an identical type, univ_ptr

Assignments and Operators 65

4

Table 4-2 Fixed- and Variable-Length String Assignments

Null Strings

Pascal treats null strings as constant strings of length zero. Table 4-3 shows the
null string assignments.

Table 4-3 Null String Assignments

String Constants

When assigning a constant string to a packed array of char , standard
Pascal requires that the strings be the same size.

Pascal allows the constant string and packed array of char to be unequal
in size, truncating the constant string if it is longer or padding it with blanks if
it is shorter.

Type of String Type of Assignment-Compatible Expression

array of char varying string, constant string, and array of char if the
arrays have the same length

varying varying string, constant string, array of char , and char

Assignment Description

varying := ''; The compiler assigns the null string to the variable-
length string. The length of the variable-length string
equals zero.

array of char := ''; The compiler assigns a string of blanks to the character
array. The length of the resulting string is the number
of elements in the source character array.

char := ''; It is illegal to assign a null string to a char variable.
Use chr(0) instead.

String concatenation In a string concatenation expression such as:
S := 'hello' + '' + S;

'' is treated as the additive identity (as nothing).

66 Pascal Language Reference

4

Operators
Pascal supplies six classes of operators:

• Arithmetic operators
• Bit operators
• boolean operators
• Set operators
• Relational operators
• String operators

Arithmetic Operators

The arithmetic operators are summarized in Table 4-4.

Table 4-4 Arithmetic Operators

The mod Operator

Pascal extends the standard definition of the mod operator as follows.

In the expression i mod j, when i is positive, Pascal and standard Pascal
produce the same results. However, when i is negative, and you do not
compile your program with a standard option (–s , –s0 , –s1 , –V0, or –V1), the
following is true :

i mod j

equals:

-1 * remainder of |i| divided by |j|

Operator Operation Operands Result

+ addition integer or real integer or real

- subtraction integer or real integer or real

* multiplication integer or real integer or real

/ division integer or real real

div truncated division integer integer

mod modulo integer integer

Assignments and Operators 67

4

The Pascal program, mod.p ,
which computes i mod j

program modexample(output);

{ This program demonstrates the nonstandard
 mod function. }

var
 i: integer;
 j: integer;

begin
 for i := -3 to -1 do
 for j := 1 to 3 do
 if j <> 0 then
 writeln(i: 4, j: 4, i mod j: 4)
end. { mod_example }

The commands to compile and
execute mod.p without any
options

hostname% pc mod.p
hostname% a.out
 -3 1 0
 -3 2 -1
 -3 3 0
 -2 1 0
 -2 2 0
 -2 3 -2
 -1 1 0
 -1 2 -1
 -1 3 -1

68 Pascal Language Reference

4

Bit Operators

Table 4-5 shows the bit operators. The ~ operator produces the same results as
the built-in Pascal function, lnot . Similarly, & is equivalent to the function,
land ; | and ! are equivalent to lor . See Chapter 7, “Input and Output,” for
descriptions of these functions and the truth tables that both the functions and
the operators use.

Table 4-5 Bit Operators

boolean Operators

The boolean operators, which include the nonstandard and then and or else
operators, are summarized in Table 4-6.

The results negative i produces
when you compile mod.p with
the –s option

hostname% pc -s mod.p
hostname% a.out
 -3 1 0
 -3 2 1
 -3 3 0
 -2 1 0
 -2 2 0
 -2 3 1
 -1 1 0
 -1 2 1
 -1 3 2

Operator Operation Operands Result

~ bitwise not integer integer

& bitwise and integer integer

| bitwise or integer integer

! bitwise or (same as |) integer integer

Assignments and Operators 69

4

Table 4-6 boolean Operators

The and then Operator

The and then operator differs from the standard and operator in that it
guarantees the order in which the compiler evaluates the logical expression.
Left to right and the right operands are evaluated only when necessary. For
example, when you write the following syntax, the compiler may evaluate
odd(y) before it evaluates odd(x) :

odd(x) and odd(y)

However, when you use the following syntax, the compiler always evaluates
odd(x) first:

odd(x) and then odd(y)

If odd(x) is false , odd(y) is not evaluated.

Note – You cannot insert comments between the and and the then operators.

Operator Operation Operands Result

and Conjunction boolean boolean

and then Similar to boolean and boolean boolean

not Negation boolean boolean

or Disjunction boolean boolean

or else Similar to boolean or boolean boolean

70 Pascal Language Reference

4

The or else Operator

The or else operator is similar to the and then operator. In the following
expression, the compiler evaluates odd(x) first, and if the result is true , does
not evaluate odd(y):

odd(x) or else odd(y)

Note – You cannot insert comments between the or and the else operators.

The Pascal program,
and_then.p, which uses
and then to test if two numbers
are odd

program and_then(input, output);

{ This program demonstrates the use
 of the operator and then. }

var
 x, y: integer16;

begin
 write('Please enter two integers: ');
 readln(x, y);
 if odd(x) and then odd(y) then
 writeln('Both numbers are odd.')
 else
 writeln('Both numbers are not odd.');
end. { and_then }

The commands to compile and
execute and_then.p . This
example shows the output when
you input the numbers 45 and 6.

hostname% pc and_then.p
hostname% a.out
Please enter two integers: 45 6
Both numbers are not odd.

Assignments and Operators 71

4

Set Operators

The set operators in Table 4-7 accept different set types as long as the base
types are compatible. The relational operators can also be used to compare
set-type values.

Table 4-7 Set Operators

The Pascal program,
or_else.p , which uses
or else to test if two numbers
are less than 10.

program or_else(input, output);

{ This program demonstrates the use
 of the operator or else. }

var
 x, y: integer16;

begin
 write('Please enter two integers: ');
 readln(x, y);
 if (x < 10) or else (y < 10) then
 writeln('At least one number is less than 10.')
 else
 writeln('Both numbers are greater than or equal to 10.');
end. { or_else }

The commands to compile and
execute or_else.p . This
example shows the output when
you input the numbers 101 and 3.

hostname% pc or_else.p
hostname% a.out
Please enter two integers: 101 3
At least one number is less than 10.

Operator Operation Operands Result

+ Set union Any set type Same as operands

- Set difference Any set type Same as operands

* Set intersection Any set type Same as operands

in Member of a specified set 2nd arg:any set type
1st arg:base type of 2nd arg

boolean

72 Pascal Language Reference

4

Relational Operators

The relational operators are given in Table 4-8. In Pascal, you can apply all
relational operators to sets and the equality (=) and inequality (<>) operators
on records and arrays.

Table 4-8 Relational Operators

Relational Operators on Sets

Use the relational operators to compare sets of identical types. The result is a
boolean (true or false) value.

Operator Operation Operand Results

= Equal Any real, integer ,
boolean, char , record,
array, set, or pointer type

boolean

<> Not equal Any real , integer ,
boolean , char , record,
array, set, or pointer type

boolean

< Less than Any real , integer ,
boolean , char , string,
or set type

boolean

<= Less than or equal Any real , integer ,
boolean , char , string,
or set type

boolean

> Greater than Any real , integer ,
boolean , char , string,
or set type

boolean

>= Greater than or equal Any real , integer ,
boolean , char , string,
or set type

boolean

Assignments and Operators 73

4

The = and <> Operators on Records and Arrays

Use the = and <> operators to compare character arrays of the same size. For
example:

• You can compare a varying[10] string with an alfa string.
• You cannot compare an alfa string with an array[1..15] .

In making comparisons, between arrays and records, make sure the operands
are of the same type.

The Pascal program, sets.p ,
which applies the < and >
operators to two sets of colors.
The < operator tests if a set is a
subset of another set. The >
operator tests if a set is a proper
subset of another set.

program set_example(output);

{ This program demonstrates the use of relational
 operators on sets. }

var
 set1, set2: set of (red, orange, yellow, green);

begin
 set1 := [orange, yellow];
 set2 := [red, orange, yellow];
 writeln(set1 > set2);
 writeln(set1 < set2)
end. { set_example }

The commands to compile and
execute sets.p

hostname% pc sets.p
hostname% a.out
false
true

74 Pascal Language Reference

4

Comparing Records (Screen 1 of 2)

The Pascal program,
compare.p , which makes
comparisons among records

program record_example(output);

const
 MAX = 10;

type
 Shape = (Square, Trapezoid, Rectangle);
 variant_record =
 record
 case Shape_type: Shape of
 Square: (side1: real);
 Trapezoid: (top1: real;
 bottom: real;
 height: real);
 Rectangle: (length: real;
 width: real)
 end;

 normal_record =
 record
 name: array [1..MAX] of char;
 avg: integer;
 grade: char
 end;

var
 class1: normal_record := ['Susan', 100];
 class2: normal_record := ['John', 99];
 shapes1: variant_record;
 shapes2: variant_record;

Assignments and Operators 75

4

Comparing Records (Screen 2 of 2)

String Operators

With the string concatenation operator, the plus sign (+), you can concatenate
any combination of varying, array of char, constant strings, and single
characters.

 begin
 { Should PASS. }
 if class1 <> class2 then
 writeln('PASSED')
 else
 writeln('FAIL');

 shapes1.Shape_type := Rectangle;
 shapes2.Shape_type := Square;
 { Should PASS }
 if shapes1 = shapes2 then

 writeln('FAIL')
 else
 writeln('PASSED');

 shapes1.Shape_type := Trapezoid;
 shapes2.Shape_type := Trapezoid;

 { Should PASS. }
 if shapes1 = shapes2 then
 writeln('PASSED')
 else
 writeln('FAIL')
end. { record_example }

The commands to compile and
execute compare.p

hostname% pc compare.p
hostname% a.out
PASSED
PASSED
PASSED

76 Pascal Language Reference

4

Precedence of Operators
Table 4-9 lists the order of precedence of Pascal operators, from the highest to
the lowest.

Table 4-9 Precedence of Operators

The Pascal program,
concate.p , which concatenates
four types of strings

program string_example(output);

{ This program demonstrates the use of
 the string concatenation operator. }

var
 col: varying [10] of char := 'yellow';
 fish: array [1..4] of char := 'tail';
 n1: char := 'o';
 n2: char := 'r';

begin
 write(fish + n1 + n2 + 'bird ', col + 'bird ');
 writeln(col + fish)
end. { string_example }

The commands to compile and
execute concate.p

hostname% pc concate.p
hostname% a.out
tailorbird yellowbird yellowtail

Operators Precedence

~, not , Highest

* , / , div , mod, and , &, .

| , ! , +, - , or , .

=, <>, <, <=, >, >=, in , .

or else , and then Lowest

77

Program Declarations 5

This chapter describes Pascal program declarations. It contains the following
sections:

Declarations
This section describes the label, constant, type, variable, and define
declarations. Procedure and function declarations are described in Chapter 6,
“Built-In Procedures and Functions.”

Label Declaration

The label declaration defines labels, which are used as the target of goto
statements.

Comments

In Pascal, you can use both identifiers and integers as labels. Using identifiers
as labels makes your code easier to read.

Declarations page 77

Procedure and Function Headings page 84

78 Pascal Language Reference

5

Example

The Pascal program, label.p program return_example;

{ This program demonstrates the use of the
 label declaration. }

var
 i: integer;

procedure test;
label
 error_negative_value , error_bad_values , error_value_too_big;
begin
 if i < 0 then
 goto error_negative_value
 else if (i = 2) or (i = 3) then
 goto error_bad_values
 else if i > 100 then
 goto error_value_too_big;
 return;
error_negative_value:
 writeln('Value of i must be greater than 0.');
 return;
error_bad_values:
 writeln('Illegal value of i: 2 or 3.');
 return;
error_value_too_big:
 writeln('Value of i too large.');
 return
end; { test }

begin { main procedure }
 write('Enter value for i: ');
 readln(i);
 test
end. { return_example }

Program Declarations 79

5

Constant Declaration

The constant declaration defines constants, values that do not change during
program execution.

The value of expression can be a compile-time evaluable expression. It can
contain any of the following:

• A real , integer , boolean , character , set , or string value.

• The pointer constant nil .

• Another previously defined constant.

• Predefined Pascal routines (see Chapter 7, “Input and Output”) called with
constant expression arguments, if applicable.

• An operator (see Chapter 4, “Assignments and Operators”).

Example

Type Declaration

The type declaration describes and names types used in variable, parameter,
and function declarations.

The commands to compile and
execute label.p

hostname% pc label.p
hostname% a.out
Enter value for i: 101
Value of i too large.

This constant declaration
defines six valid constants.

const
x = 75;
y = 85;
month = 'November';
lie = false;
result = (x + y) / 2.0;
answer = succ(sqrt(5+4));

80 Pascal Language Reference

5

Unlike standard Pascal, in Pascal, you can define universal pointer types and
procedure and function pointer types in the type declaration.

Example

Variable Declaration

The variable declaration declares variables.

In the variable declaration, you can specify the variable scope, attributes, and
initial values. In most cases, you do not have a variable declaration that has
both a variable scope and a variable attribute, because these are different ways
for doing similar things.

Scope

The scope of a variable is either private or public .

• A private variable is visible in the current compilation unit only.
• A public variable is visible across multiple programs and modules.

You can also use the define/extern declaration to declare a variable as
public , and the static attribute to declare a variable as private . See
Appendix A, “Overview of Pascal Extensions,” for information on
define/extern .

This type declaration defines
opaque_pointers as a
universal pointer and routines
as a function pointer.

type
lowints = 0..100;
primary_colors = (red, yellow, blue);
opaque_pointers = univ_ptr;
routines = function(i: integer): boolean;
capital_letters = set of 'A'..'Z';
digits = set of lowints;
char_array = array[1..10] of char;
record_type = record

name: char_array;
age : integer;

end;

Program Declarations 81

5

Variables in the var declaration section of a program default to public when
you compile your program without the –xl option. When you compile your
program with –xl , variables default to private .

Attributes

The variable attributes determine how to allocate the variable and its scope.
They include static , extern , and define .

static

A static variable is a variable that is private in scope and which is
allocated statically. A global variable declared as static is equivalent to a
variable that has been declared private . Pascal generates a compile-time
error if you attempt to declare a global variable as both static and public .

When you declare a local variable as static , the variable retains its value
after the program exits the procedure in which it is declared. You can only
initialize a local variable, that is, a variable declared in a procedure, in the var
declaration if you also declare it as static .

This code declares both public
and private variables.

public var
total: single := 100.00;
quantity: integer16 := 25;

private var
score: integer16 := 99;

82 Pascal Language Reference

5

extern

The extern attribute is used to declare a variable that is not allocated in the
current module or program unit, but is a reference to a variable allocated in
another unit. You cannot initialize extern variables. See the Pascal 4.2 User’s
Guide, which describes separately compiled programs and modules; it also
contains examples of the extern attribute.

The Pascal program, static.p program static_example;

{ This program demonstrates the use of the
 static variable attribute. }

var
 i: integer;

procedure count;

var
 number_of_times_called: static integer := 0;

begin
 number_of_times_called := number_of_times_called + 1;
 writeln('Call number: ', number_of_times_called)
end; { count }

begin { main program }
 for i := 1 to 4 do begin
 count
 end
end. { static_example }

The commands to compile and
execute static.p

hostname% pc static.p
hostname% a.out
Call number: 1
Call number: 2
Call number: 3
Call number: 4

Program Declarations 83

5

define

The define attribute is used to declare a variable that is allocated in the
current module and whose scope is public . define is especially useful for
declaring variables with the –xl option, which makes global variables
private by default. See the Pascal 4.2 User’s Guide for an example of this
attribute.

Initialization
You can initialize real , integer , boolean , character, set, record, array, and
pointer variables in the var declaration. You cannot initialize a local variable
(a variable in the var declaration of a procedure or function) unless you
declare it as static .

Define Declaration

The define declaration controls the allocation of variables.

This example shows how to
initialize a variable in the var
declaration.

var
x: array[1..5, 1..3] of real := [[* of 0.0] , [* of 0.0]];
year, zeta: integer := 0;
sunny: boolean := false;
c1: char := 'g';
citrus: set of fruit := [orange, lemon, lime];
name: array[1..11] of char := 'Rembrandt';

This code correctly declares the
variables x , y, windy , and
grade in procedure
miscellaneous as static.

procedure miscellaneous;

var
x: static integer16 := maxint;
y: static single := 3.9;
windy: static boolean := true;
grade: static char := 'C';

84 Pascal Language Reference

5

Comments

The value of identifier must correspond to either a variable or procedure or
function identifier. If identifier corresponds to a variable, it must have a
matching variable declaration with the extern attribute. The define
declaration nullifies the meaning of extern : it allocates the variable in the
current program or module unit.

If identifier corresponds to a procedure or a function, it nullifies a previous
extern procedure/function declaration; this means that you must define the
procedure/function thereafter.

You can initialize variables, but not procedures and functions, in the define
declaration. Identifiers in the define declaration are always public .

Example

See the chapter on separate compilation in the Pascal 4.2 User’s Guide for
examples of the define declaration.

Procedure and Function Headings
This section discusses the visibility, parameters, the type identifier, functions,
and options for procedure and function headings.

Visibility

You can declare a procedure or function at the outer block level as either
public or private .

When a procedure or function is public , you can reference that routine in
another program or module unit. Declaring a routine as private restricts its
accessibility to the current compilation unit.

You can also use the define/extern declaration to declare a procedure or
function as public , and the internal routine option to declare a routine as
private . For more information on the define/extern declaration, see
Appendix A, “Overview of Pascal Extensions.”

Program Declarations 85

5

Top-level procedures and functions declared in a program default to public
when you compile your program without the –xl option. When you compile
your program with –xl , all top-level routines declared in the program become
private .

Nested procedures and functions are always private ; it is illegal to declare a
nested routine as public .

Procedures and functions declared within a module unit are always public .
For additional information on modules, see the Pascal 4.2 User’s Guide.

Parameter List

Pascal supplies the parameter types in , out , in out, var , value , and univ .

Parameters: in , out , and in out

The in , out , and in out parameters are extensions to the standard, which are
used to specify the direction of parameter passing:

This code fragment declares
both public and private
functions and procedures.

public procedure average(s,t: single);

private procedure evaluate(n : integer);

public function big (quart : integer16;
 cost : single) : single;

private function simple (x, y : boolean) : integer16;

86 Pascal Language Reference

5

in Indicates that the parameter can only pass a value into the routine. The
parameter is, in effect, a read-only variable. You cannot assign a value to
an in parameter, nor can you pass an in parameter as an argument to
another procedure that expects a var , out , or in out argument.

out Indicates that the parameter is used to pass values out of the routine. In
effect, declaring a parameter as out informs the compiler that the
parameter has no initial value, and that assignments to the parameter are
retained by the caller.

in out Indicates that the parameter can both take in values and pass them back
out. An in out parameter is equivalent to a var parameter.

Program Declarations 87

5

Example

The Pascal program,
in_out.p . The procedure
compute_area reads in the
length and width and outputs
result . The procedure
multiply_by_two reads in
result , multiplies it by two and
returns the modified value.

program in_out_example(input, output);

{ This program, which finds the area of a rectangle,
 demonstrates the use of the in, out, and in out
 parameters. }

var
 length, width, result: real;

{ Find area given length and width. }
procedure compute_area(in length: real; in width: real;
 out result: real);

begin
 result := length * width
end; { compute_area } { compute_area }

{ Multiply the area by two. }
procedure multiply_by_two(in out result: real);

begin
 result := result * 2
end; { multiply_by_two } { multiply_by_two }

begin { main program }
 write('Enter values for length and width: ');
 readln(length, width);
 compute_area(length, width, result);
 writeln('The area is ', result: 5: 2, '.');
 multiply_by_two(result);
 writeln('Twice the area is ', result: 5: 2, '.')
end. { in_out_example }

88 Pascal Language Reference

5

var Parameters

With standard conformance options (-s , -V0 , -V1), var parameters are the
same in standard Pascal and Pascal. By default, the Apollo-like var
compatibility approach applies: actual and formal records and arrays should
be of the same type; other types of var must be of the same length.

For example, all pointer types are compatible to univ_ptr , and vice versa.
See “Universal Pointer” on page 42. Subranges -128...127 and 0...127 are
also var -compatible.

Value Parameters

Value parameters are the same in standard Pascal and Pascal.

univ Parameters

The nonstandard univ parameter type is actually a modifier used before data
types in formal parameter lists to turn off type checking for that parameter.
You can use it with any type of parameter except conformant array, procedure,
or function parameters.

univ is used as follows:

You could then call this procedure with a parameter of any type. You should
always declare a univ parameter as either in , out , in out , or var .

The commands to compile and
execute in_out.p . This
example shows the program
output when you input a length
of 4 and a width of 5.

hostname% pc in_out.p
hostname% a.out
Enter values for length and width: 4 5
The area is 20.00.
Twice the area is 40.00.

procedure somename (var firstparam: univ integer);

Program Declarations 89

5

univ is most often used for passing arrays, where you can call a procedure or
function with different array sizes. In that case, you generally would pass
another parameter that gives the actual size of the array, as follows:

Type Identifier

In Pascal, a function may represent a structure, such as a set, array, or record.
In standard Pascal, a function can only represent the simple types of value,
ordinal, or real .

Functions Returning Structured-Type Results

If a Pascal function returns the result of a structured type, for example, an
array, a record, a string, or some combination of these, you can construct or
update the result, component-by-component, using assignments of the form:

F S1 ... SN := E

where:

• F is the function name
• S1, ..., SN are appropriate component selectors
• E is the result component value

type
real_array = array[1..100] of real;

procedure receive(size: integer;
var theArray: univ real_array);

var
n: integer;

begin
 for n:= 1 to size do

.

.

.

90 Pascal Language Reference

5

Standard Pascal allows assignments to the whole function result variable only,
that is, F:= E , which may not be feasible or efficient enough, since you may
have to declare and initialize extra structured-type variables.

Example 1: A Function That Returns Strings

When declaring functions that return strings (arrays of chars) and varying
strings, you can specify the result by an assignment. For example:

F:= 'The answer: 12 miles'

where F is the function. However, sometimes you may want to obtain the
string result by modifying some of the characters of an existing string (variable
or parameter). In the following example, you may want to substitute a string
for the string XX.

In general, an identifier of a function f returning a string can be used in an
assignment of the kind:

f[i]:=c

for specifying the i'th byte of the function result. This Pascal extension can be
used both for strings and varying strings.

program String_Function_Example;
type s1 = array [1..20] of char;
 s2 = array [1..2] of char;

function f(x:s2):s1;
begin
 f := 'The answer: XX miles';
 f[13]:=x[1];
 f[14]:=x[2];
end;

var r: s2;
 s: s1;
begin
 r:='12';
 s:=f(r);

 writeln(s)
end.

Program Declarations 91

5

Example 2: A Function that Returns Arrays of Records
(Complex Vector Addition)

Options

Pascal supplies the standard forward routine option and the nonstandard
options, extern , external , internal , variable , and nonpascal .

forward

The forward option is the same in Pascal and standard Pascal.

program complex_vectors;

type
complex = record re, im: real end;
compl_vect = array [1..10] of complex;

function add (var a, b: compl_vect): compl_vect;
var i: integer;
begin

for i:= 1 to 10 do
begin

add[i].re:= a[i].re + b[i].re;
add[i].im:= a[i].im + b[i].im;

end;
end; { add }

var V1, V2, V3: compl_vect;
begin

...
V1:= add (V2, V3);
...

end. { complex_vectors }

92 Pascal Language Reference

5

extern and external

The extern and external options indicate that the procedure or function is
defined in a separate program or module. extern and external allow the
optional specification of the source language of the procedure or function. For
more information on these options, see the chapter on separate compilation in
the Pascal 4.2 User’s Guide.

internal

The internal option makes the procedure or function local to that module.
Specifying the internal option is the same as declaring the procedure or
function as private . Pascal generates an error message if you attempt to
declare a public procedure or function as internal .

variable

Using the variable option, you can pass a procedure or function a smaller
number of actual arguments than the number of formal arguments defined in
the routine. The actual arguments must match the formal parameters types.
You cannot pass a larger number of actual arguments than formal arguments.

Program Declarations 93

5

Example

The Pascal program,
variable.p , passes either two
or three actual arguments to the
procedure,calculate_total ,
depending on the user input.

program variable_example(input, output);

{ This program demonstrates the use of the
 variable routine option. }

const
 tax_rate = 0.07;
 shipping_fee = 2.50;

var
 price: single;
 resident: char;
 total: single;

function calculate(count: integer16; price: single;
 tax: single): single;
 options(variable);

begin
 if count = 2 then
 calculate := price + tax + shipping_fee
 else
 calculate := price + shipping_fee
end; { calculate }

begin { main program }
 write('Please enter the price: ');
 readln(price);

writeln('California residents must add local sales tax.');
 write('Are you a California resident? Enter y or n: ');
 readln(resident);
 if resident = 'y' then
 total := calculate(2, price, tax_rate * price)
 else
 total := calculate(1, price);
 writeln('Your purchase amounts to $', total: 5: 2, '.')
end. { variable_example }

94 Pascal Language Reference

5

nonpascal

Pascal supports nonpascal as a routine option when you compile your
program with the –xl option. nonpascal declares non-Pascal routines when
you are porting Apollo DOMAIN programs written in DOMAIN Pascal,
FORTRAN, or C.

nonpascal passes arguments by reference. If the argument is a variable,
nonpascal passes its address. If the argument is a constant or expression,
nonpascal makes a copy on the caller’s stack and passes the address of the
copy.

The commands to compile and
execute variable.p

hostname% pc variable.p
hostname% a.out
Please enter the price: 10.00
California residents must add local sales tax.
Are you a California resident? Enter y or n: y
Your purchase amounts to $13.20.
hostname% a.out
Please enter the price: 10.00
California residents must add local sales tax.
Are you a California resident? Enter y or n: n
Your purchase amounts to $12.50.

95

Built-In Procedures and Functions 6

This chapter describes the built-in procedures and functions Pascal supports.
It starts with two major sections:

The third section, beginning on page 99, lists the nonstandard routines
alphabetically and contains detailed descriptions and examples of each routine.

Standard Procedures and Functions
Pascal supplies the standard procedures listed in Table 6-1, and the standard
functions listed in Table 6-2.

Standard Procedures and Functions page 95

Routines Specific to Pascal (Summary) page 96

Routines Specific to Pascal (Details) page 99

Table 6-1 Standard Procedures

dispose page readln unpack

get put reset write

new read rewrite writeln

pack

96 Pascal Language Reference

6

Routines Specific to Pascal (Summary)
This section lists the nonstandard Pascal procedures and functions according to
the following categories:

• Arithmetic routines
• Bit-shift routines
• Character string routines
• Input and output routines
• Miscellaneous routines

Table 6-3 through Table 6-8 summarize these Pascal routines.

Table 6-2 Standard Functions

abs eof odd round sqrt

arctan eoln ord sin succ

chr exp pred sqr trunc

cos ln

Table 6-3 Nonstandard Arithmetic Routines

Routine Description

addr Returns the address of a variable, constant, function, or procedure.

card Returns the cardinality of a set.

expo Calculates the exponent of a variable.

firstof Returns the first possible value of a type or variable.

in_range Determines whether a value is in the defined integer subrange.

lastof Returns the last possible value of a type or variable.

max Returns the larger of two expressions.

min Returns the smaller of two expressions.

random Generates a random number between 0.0 and 1.0.

seed Resets the random number generator.

sizeof Returns the size of a designated type or variable.

Built-In Procedures and Functions 97

6

Table 6-4 Nonstandard Bit Shift Routines

Table 6-5 Nonstandard Character String Routines

Routine Description

arshft Does an arithmetic right shift of an integer.

asl Does an arithmetic left shift of an integer.

asr Identical to arshft .

land Returns the bitwise and of two integers.

lnot Returns the bitwise not of an integer.

lor Returns the inclusive or of two integers.

lshft Does a logical left shift of an integer.

lsl Identical to lshft .

lsr Identical to rshft .

rshft Does a logical right shift of an integer.

xor Returns the exclusive or of two integers.

Routine Description

concat Concatenates two strings.

index Returns the position of the first occurrence of a string or character
inside another string.

length Returns the length of a string.

stradd Adds a string to another string.

substr Extracts a substring from a string.

trim Removes all trailing blanks in a character string.

98 Pascal Language Reference

6

Table 6-6 Nonstandard Input and Output Routines

Table 6-7 Extensions to Standard Input and Output Routines

Routine Description

append Opens a file for modification at its end.

close Closes a file.

filesize Returns the current size of a file.

flush Writes the output buffered for a Pascal file into the associated
operating system file.

getfile Returns a pointer to the C standard I/O descriptor associated with a
Pascal file.

linelimit Terminates program execution after a specified number of lines has
been written into a text file.

message Writes the specified information on stderr .

open Associates an external file with a file variable.

remove Removes the specified file.

seek Performs random access to a file, changing its current position.

tell Returns the current position of a file.

Routine Description

read and
readln

Reads in boolean variables, fixed- and variable-length strings, and
enumerated types from the standard input.

reset and
rewrite

Accepts an optional second argument, an operating system file name.

write and
writeln

Outputs enumerated type values to the standard output.
Outputs expressions in octal or hexadecimal.
Allows negative field widths.

Built-In Procedures and Functions 99

6

Table 6-8 Miscellaneous Nonstandard Routines

Routines Specific to Pascal (Details)
Described in this section are the detailed descriptions for each of the Pascal-
specific routines: its syntax, arguments, and return value. Comments and an
example are also included.

addr

The addr function returns the address of a variable, constant, function, or
procedure.

Routine Description

argc Returns the number of arguments passed to the program.

argv Assigns the specified program arguments a string variable.

clock Returns the user time consumed by this process.

date Fetches the current date.

discard Explicitly discards the return value of a function.

getenv Returns the value associated with an environment name.

halt Terminates program execution.

null Performs no operation.

pcexit Terminates the program and returns an exit code.

stlimit Terminates program execution if a specified number of statements have
been executed in the current loop

sysclock Returns the system time consumed by this process.

time Retrieves the current time.

trace Prints a stack traceback.

Type transfer Changes the data type of a variable or expression.

wallclock Returns the elapsed number of seconds since
00:00:00 GMT January 1, 1970.

100 Pascal Language Reference

6

Syntax

addr (x)

Arguments

x is either a variable, a constant string, a function, or a procedure.

Return Value

The return value of addr is the address in which the variable or a constant
string is stored. For function or procedural arguments, addr returns the
starting address of the function or procedure. In each case, addr returns a
value of type univ_ptr .

Comments

In Pascal, you can apply addr to a variable, function, or procedure with
dynamic extent such as local variables and nested functions or procedures.
Exercise caution in doing so and then dereferencing the resulting pointer value.
In the case of local variables, dereferencing these pointers outside the scope in
which the variable is active results in a meaningless value.

The compiler passes a static link to nested functions and procedures when it
calls them. The compiler does not generate this link when dereferencing
pointer values to procedures or functions. Consequently, Pascal generates a
warning if the argument to addr is any of these objects.

addr cannot be applied to bit-aligned fields of aggregates.

Note – If you use the addr () function, do not use the –H option. The –H
option makes sure that all pointers used point into the heap.

Built-In Procedures and Functions 101

6

Example

The Pascal program, addr.p program addr_example(output);

{ This program demonstrates the use of the
 addr function. }

const
 name = 'Gail';

type
 ptr = ^ integer;
 ptr_char = ^ alfa;

var
 ptr_address: ptr;
 ptr_address_char: ptr_char;
 x: integer;
 y: integer;
 c: alfa;

begin
 x := maxint;

 { Get the address of x. }
 ptr_address := addr(x);

 { Get the contents of ptr_address. }
 y := ptr_address^;
 writeln('The address of x is ', ptr_address: 3, '.');
 writeln('The contents of x is ', y: 3, '.');

 { Get the address of the constant name. }
 ptr_address_char := addr(name);

 { Get the contents of ptr_address_char. }
 c := ptr_address_char^;

 writeln('The address of c is ', ptr_address_char: 3, '.');
 writeln('The contents of c is ', c: 4, '.')
end. { addr_example }

102 Pascal Language Reference

6

append

The append function allows a file to be modified, and sets the current position
to the end of the file.

Syntax

append (file, filename)

Arguments

file is a variable with the text or file data type.

filename, which is optional, is a string of fixed or variable length, or a string
constant.

Return Value

append does not return any values.

Comments

For example, this code associates the Pascal file data with the operating system
file, existent :

append(data, 'existent');

If you do not pass an optional second argument, Pascal creates a new
temporary file, which is deleted when the program is terminated.

See also the sections: “reset,” “rewrite,” and “close.”

The commands to compile and
execute addr.p

hostname% pc addr.p
hostname% a.out
The address of x is 38764.
The contents of x is 2147483647.
The address of c is 33060.
The contents of c is Gail.

Built-In Procedures and Functions 103

6

Example

The example that follows shows how to use append .

104 Pascal Language Reference

6

The Pascal program, files.p program files_example(input, output);
const
 MaxLength = 80;
var
 f: text;
 line: varying [MaxLength] of char;
begin
 rewrite(f, 'poem.txt');
 writeln('Enter a lines of text and hit Control+D to end the
job.');
 while not eof do begin
 readln(line);
 writeln(f, line);
 end;
 close(f);
 writeln;
 writeln('There are the lines of text you input:');
 reset(f, 'poem.txt');
 while not eof(f) do begin
 readln(f, line);
 writeln(line);
 end;
 close(f);

 reset(input); { Because Control+D close input }
 append(f, 'poem.txt');
 writeln('Append a lines of text and hit Control+D to end the
job.');
 while not eof do begin
 readln(line);
 writeln(f, line);
 end;
 close(f);
 writeln;
 writeln('There are the lines of all text you input:');
 reset(f, 'poem.txt');
 while not eof(f) do begin
 readln(f, line);
 writeln(line);
 end;
 close(f);
end.

Built-In Procedures and Functions 105

6

argc

The argc function returns the number of arguments passed to the program.

Syntax

argc

Arguments

argc does not take any arguments.

Return Value

argc returns an integer value.

Comments

The return value of argc is always at least 1, the name of the program.

argc is normally used in conjunction with the built-in procedure, argv . See
the argv listing on page 105.

Example

See the example in the argv listing page 105.

argv

The argv procedure assigns the specified program argument to a string
variable.

Syntax

argv (i, a)

106 Pascal Language Reference

6

Arguments

i is an integer value.

a is a fixed- or variable-length string.

Return Value

argv returns a string variable.

Comments

argv returns the i'th argument of the current process to the string variable a. i
ranges from 0, the program name, to argc -1.

argc is a predeclared function that tells you how many arguments are being
passed to the program. argv is normally used in conjunction with argc .

Built-In Procedures and Functions 107

6

Example

arshft

The arshft function does an arithmetic right shift of an integer value.

Syntax

arshft (num, sh)

The Pascal program, argv.p program argv_example(output);

{ This program demonstrates the use of
 argc and argv. }

var
 i: integer32;
 name: varying [30] of char;

begin
 { Argument number 0 is the name of the program. }
 argv(0, name);
 writeln('The name of the program is ', name, '.');
 i := 1;
 while i <= argc - 1 do begin
 argv(i, name);
 writeln('Argument number ', i: 1, ' is ', name, '.');
 i := i + 1
 end
end. { argv_example }

The commands to output and
execute argv.p

hostname% pc argv.p
hostname% a.out
The name of the program is a.out.
hostname% a.out one two three
The name of the program is a.out.
Argument number 1 is one.
Argument number 2 is two.
Argument number 3 is three.

108 Pascal Language Reference

6

Arguments

num and sh are integer expressions.

Return Value

arshft returns a 32-bit integer value.

Comments

arshft shifts the bits in num sh places to the right. arshft preserves the sign
bit of num. arshft does not wrap bits around from left to right. The sign bit
is the most significant (leftmost) bit in the number. Pascal uses two's
complement to represent negative integers. For example, -8 as a 16-bit integer
is represented as:

1111 1111 1111 1000

If you shift this number to the right by 1:

(arshft (-8, 1))

your result is:

1111 1111 1111 1100

The result arshft returns is machine-dependent, and is unspecified unless the
following is true :

0 <= sh <= 32

Built-In Procedures and Functions 109

6

Example

asl

The asl function does an arithmetic left shift of an integer value.

The Pascal program, arshft.p program arshft_example(input, output);

{ This program demonstrates the arithmetic right shift. }

const
 SIZE = 8;

var
 i: integer32;
 i32: integer32;
 loop: integer32;

begin
 write('Enter a positive or negative integer: ');
 readln(i);
 for loop := 1 to SIZE do begin
 i32 := arshft(i, loop);
 write('Arithmetic right shift ', loop: 2);
 writeln(' bit(s): ', i32 hex)
 end
end. { arshft_example }

The commands to compile and
execute arshft.p . The value
the bit-shift routines return may
depend upon the architecture of
your system.

hostname% pc arshft.p
hostname% a.out
Enter a positive or negative integer: -2
Arithmetic right shift 1 bit(s): FFFFFFFF
Arithmetic right shift 2 bit(s): FFFFFFFF
Arithmetic right shift 3 bit(s): FFFFFFFF
Arithmetic right shift 4 bit(s): FFFFFFFF
Arithmetic right shift 5 bit(s): FFFFFFFF
Arithmetic right shift 6 bit(s): FFFFFFFF
Arithmetic right shift 7 bit(s): FFFFFFFF
Arithmetic right shift 8 bit(s): FFFFFFFF

110 Pascal Language Reference

6

Syntax

asl (num, sh)

Arguments

num and sh are integer expressions.

Return Value

asl returns a 32-bit integer value.

Comments

asl shifts the bits in num sh places to the left. asl preserves the sign bit of
num and does not wrap bits from left to right.

The result asl returns is machine-dependent and is unspecified unless the
following is true :

0 <= sh <= 32

Built-In Procedures and Functions 111

6

Example

asr

The asr function is identical to the arshft function. See the arshft listing.

The Pascal program, asl.p program asl_example(input, output);

{ This program demonstrates the arithmetic left shift. }

const
 SIZE = 8;

var
 i: integer32;
 i32: integer32;
 loop: integer32;

begin
 write('Enter a positive or negative integer: ');
 readln(i);
 for loop := 1 to SIZE do begin
 i32 := asl(i, loop);
 write('Arithmetic left shift ', loop: 2);
 writeln(' bit(s): ', i32 hex)
 end
end. { asl_example }

The commands to compile and
execute asl.p

hostname% pc asl.p
hostname% a.out
Enter a positive or negative integer: 19
Arithmetic left shift 1 bit(s): 26
Arithmetic left shift 2 bit(s): 4C
Arithmetic left shift 3 bit(s): 98
Arithmetic left shift 4 bit(s): 130
Arithmetic left shift 5 bit(s): 260
Arithmetic left shift 6 bit(s): 4C0
Arithmetic left shift 7 bit(s): 980
Arithmetic left shift 8 bit(s): 1300

112 Pascal Language Reference

6

card

The card function returns the number of elements in a set variable.

Syntax

card (x)

Arguments

x must be a set variable.

Return Value

card returns an integer value.

Comments

card returns the number of elements in the actual set variable, not the size of
the set type.

Built-In Procedures and Functions 113

6

Example

clock

The clock function returns the user time consumed by the process.

The Pascal program, card.p program card_example(output);

{ This program demonstrates the use of the card function. }
type
 lowints = 0..100;
 primary_colors = set of (red, yellow, blue);
 possibilities = set of boolean;
 capital_letters = set of 'A'..'Z';
 digits = set of lowints;

var
 pri: primary_colors;
 pos: possibilities;
 cap: capital_letters;
 dig: digits;

begin
 pri := [red, yellow, blue];
 pos := [true, false];
 cap := ['A'..'Z'];
 dig := [0..100];

writeln('There are ',card(pri): 4, ' primary colors.');
writeln('There are ',card(pos): 4, ' possibilities.');
writeln('There are ',card(cap): 4, ' capital letters.');
writeln('There are ',card(dig): 4, ' digits.')

end. { card_example }

The commands to output and
execute card.p

hostname% pc card.p
hostname% a.out
There are 3 primary colors.
There are 2 possibilities.
There are 26 capital letters.
There are 101 digits.

114 Pascal Language Reference

6

Syntax

clock

Arguments

clock does not take any arguments.

Return Value

clock returns an integer value.

Comments

clock returns the user time in milliseconds.

See also the sysclock function, which returns the system time the process
uses.

Built-In Procedures and Functions 115

6

Example

clock.p Program (Screen 1 of 2)

The Pascal program, clock.p program clock_example(input, output);

{ This program times how long it takes to run the
 towers of hanoi. }

const
 DISK = 16;

var
 num: array [1..3] of integer;
 counts: integer32;
 before_user: integer;
 before_sys: integer;
 after_user: integer;
 after_sys: integer;

procedure moves(number, f, t: integer);

var
 o: integer;

begin
 if number = 1 then begin
 num[f] := num[f] - 1;
 num[t] := num[t] - 1;
 counts := counts + 1
 end else begin
 o := 6 - (f + t);
 moves(number - 1, f, o);
 moves(1, f, t);
 moves(number - 1, o, t)
 end
end; { moves } { moves }

116 Pascal Language Reference

6

clock.p Program (Screen 2 of 2)

close

The close procedure closes a file.

Syntax

close (file)

Arguments

file is a file having the text or file data type.

Return Value

close does not return any values.

begin { main program }
 before_user := clock;
 before_sys := sysclock;
 moves(DISK, 1, 3);
 after_sys := sysclock;
 after_user := clock;
 write('For ', DISK: 1, ' disks, there were ');
 writeln(counts: 1, ' steps.');
 write('Elapsed system time: ');
 writeln(after_sys - before_sys: 1, ' milliseconds.');
 write('Elapsed user time: ');
 writeln(after_user - before_user: 1, ' milliseconds.')
end. { clock_example }

The commands to compile and
execute clock.p . The time
clock and sysclock return is
system-dependent.

hostname% a.out
For 16 disks, there were 65535 steps.
Elapsed system time: 16 milliseconds.
Elapsed user time: 583 milliseconds.

Built-In Procedures and Functions 117

6

Comments

close closes the open file named file. close is optional; Pascal closes all files
either when the program terminates or when it leaves the procedure in which
the file variable is associated with the open file.

Pascal generates a runtime error if file is not an open file. You can trap this
error with the I/O error recovery mechanism, described in “I/O Error
Recovery” on page 214.

In Pascal, you cannot close the predeclared files input and output . If you
redirect input or output , the associated streams are automatically closed.

See also the open , reset , and rewrite procedures, which open a file.

Example

See the example in the open listing in this chapter.

concat

The concat function returns the concatenation of two strings.

Syntax

concat (str1, str2)

Arguments

str1 is a variable-length string, a character array, or a character-string constant.

str2 is a variable-length string, a character array, or a character-string constant.

Return Value

concat returns a variable-length string.

118 Pascal Language Reference

6

Comments

concat returns a concatenation of str1 and str2. You can concatenate any
combination of varying, array of char , constant strings, and single characters.

The string plus (+) operator returns the same result as the concat function.

If the resulting string is longer than the maximum length of the destination
varying string, it is truncated to this maximum length. If the resulting string is
longer than 65,535 characters, it is truncated to this length.

See also the section: “stradd.”

Example

date

The date procedure takes the current date (as assigned when the operating
system was initialized) and assigns it to a string variable.

Syntax

date (a)

The Pascal program, concat.p program concat_example(output);
var
 color: varying [10] of char := ' Black';

begin
 writeln(concat(color, 'bird' + '.'));
end.

The commands to compile and
execute concat.p

hostname% pc concat.p
hostname% a.out
 Blackbird.

Built-In Procedures and Functions 119

6

Arguments

a is a variable that can be either a character array that is 8 elements long for the
"C" locale, or a variable-length string.

Return Value

date returns a character string in the form traditional for a given locale. For
the "C" locale, the form is mm-dd-yy , where dd is the day, mm is the month,
and yy is the year.

Comments

date puts a zero in front of the day and the year, so that they always consist of
two digits.

Use the environment variable LC_TIME to set the necessary locale.

See also the section: “time.”

Example

The Pascal program, date.p program date_example(output);

var
 s1: alfa;
 s2: array[1..8] of char;
 s3: array[89..96] of char;
 s4: varying[100] of char;

begin
 date(s1);
 date(s2);
 date(s3);
 date(s4);
 writeln('The date is ', s1, '.');
 writeln('The date is ', s2, '.');
 writeln('The date is ', s3, '.');
 writeln('The date is ', s4, '.');
end.

120 Pascal Language Reference

6

discard

The discard procedure removes the value of an expression.

Syntax

discard (expr)

Arguments

expr is any expression including a function call.

Return Value

discard does not return any values.

The commands to compile and
execute date.p

hostname% pc date.p
hostname% a.out
The date is 12/19/94.
The date is 12/19/94.
The date is 12/19/94.
The date is 12/19/94.
hostname% setenv LC_TIME ru
hostname% a.out
The date is 19.12.94.
The date is 19.12.94.
The date is 19.12.94.
The date is 19.12.94.
hostname% setenv LC_TIME C
hostname% a.out
The date is 12/19/94.
The date is 12/19/94.
The date is 12/19/94.
The date is 12/19/94.

Built-In Procedures and Functions 121

6

Comments

Use discard to call a function or evaluate an expression whose value you do
not need to continue program execution. For example, you can use discard
to execute a function whose return value you do not need.

122 Pascal Language Reference

6

Example

The Pascal program,
discard.p

program discard_example(output);

{ This program computes a discount if the total amount
 is over DISC_AMOUNT. }

const
 RATE = 0.15;
 DISC_AMOUNT = 100.00;

var
 amount: single;
 discount: single;

function compute(amount: single): single;

begin
 compute := amount * RATE
end; { compute }

begin { main program }
 write('Enter sale amount: ');
 readln(amount);
 if amount < DISC_AMOUNT then begin
 discard(compute(amount));
 write('No discount applied; total charge amount');

writeln(' must be more than ', DISC_AMOUNT: 2: 2, '.')
 end else begin
 discount := compute(amount);
 write('The amount of discount on ');
 writeln(amount: 2: 2, ' is ', discount: 2: 2, '.')
 end
end. { discard_example }

The commands to compile and
execute discard.p

hostname% pc discard.p
hostname% a.out
Enter sale amount: 125.00
The amount of discount on 125.00 is 18.75.

Built-In Procedures and Functions 123

6

expo

The expo function calculates the integer-valued exponent of a specified
number.

Syntax

expo (x)

Arguments

x is either a real or integer value.

Return Value

expo returns an integer value.

Comments

expo returns an integer that represents the integer-valued exponent of a real
number.

124 Pascal Language Reference

6

Example

filesize

The filesize function returns the size of a given file.

 The Pascal program, expo.p program expo_example(output);

{ This program demonstrates the expo function. }

const
 MAX = 10;

var
 i: integer;
 r: real;

begin
 writeln(' x r := exp(x) expo(r)');
 writeln(' - ----------- -------');
 for i := 1 to MAX do begin
 r := exp(i);
 writeln(i: 2, ' ', r, ' ', expo(r))
 end
end. { expo_example }

The value expo returns may
depend upon the architecture of
your system.

hostname% pc expo.p
hostname% a.out
 x r := exp(x) expo(r)
 - ------------------
 1 2.71828182845905e+00 0
 2 7.38905609893065e+00 0
 3 2.00855369231877e+01 1
 4 5.45981500331442e+01 1
 5 1.48413159102577e+02 2
 6 4.03428793492735e+02 2
 7 1.09663315842846e+03 3
 8 2.98095798704173e+03 3
 9 8.10308392757538e+03 3
10 2.20264657948067e+04 4

Built-In Procedures and Functions 125

6

Syntax

filesize (file)

Arguments

file is a variable with the text or file data type.

Return Value

filesize returns an integer value.

Comments

The argument can be either a text file of text type, or a binary file of a certain
file of T type. It must be associated with an open file, otherwise an error
occurs.

For a text file, filesize returns the number of bytes in the file.

For a binary file of type file of T , filesize returns the number of
elements of type T in the file.

See also the sections, “seek,” and “tell.”

126 Pascal Language Reference

6

Example

firstof

The firstof function returns the value of the lower bound when its
argument is or has an ordinal type. For array types, firstof returns the
lower bound for the subrange defining the array index. For set types, it
returns the lower bound of the set base type.

Syntax

firstof (x)

The Pascal program,
filesize.p

program filesize_example;
var
 ft: text;
 fi: file of integer;
 i: integer;
begin
 rewrite(ft);
 rewrite(fi);
 i := 10;
 write(ft, i, i);
 write(fi, i, i);
 writeln('size of a text of an integer =', filesize(ft):
3, ' bytes');
 writeln('size of a file of an integer =', filesize(fi):
3, ' elements');
 close(ft);
 close(fi)
end. { filesize_example }

The commands to compile and
execute filesize.p

hostname% pc filesize.p
hostname% a.out
size of a text of an integer = 20 bytes
size of a file of an integer = 2 elements

Built-In Procedures and Functions 127

6

Arguments

x is either a variable, a constant, an expression, or the name of a user-defined
or predeclared Pascal data type. x cannot be a record, a file, a pointer type, a
conformant array, a procedure or function parameter, or a string literal.

Return Value

The return value depends on the type that x is.

Comments

Pascal follows the rules in Table 6-9 when returning the value of x.

When x is ... The value firstof returns ...

An ordinal type, a constant,
an expression, or variable

Has the same data type as its argument.

An array Has the same data type as the type of the array index.

A set type Has the same data type as the base type of the set.

128 Pascal Language Reference

6

Table 6-9 firstof Return Values

Example

See the examples that follow.

Type of Argument Return Value

integer (without –xl option) -2,147,483,648

integer (with –xl option) -32,768

integer16 -32,768

integer32 -2,147,483,648

char chr(0)

boolean false

Enumerated The first element in the enumeration type declaration.

array The lower bound of the subrange that defines the
array size.

varying 1

set of 'A'..'Z ' A (the character A).

Built-In Procedures and Functions 129

6

The Pascal program,
firstof.p

program firstof_example(output);

{ This program illustrates the use of firstof and lastof
 used with arrays and enumerated types. }

const
 dollars_per_tourist = 100;

type
 continents = (North_America, South_America, Asia, Europe,
 Africa, Australia, Antarctica);

var
 i: continents;
 major_targets: array [continents] of integer :=
 [20, 3, 15, 25, 5, 1, 0];
 planned_targets: array [continents] of integer := [* of 0];

begin
 for i := firstof(planned_targets) to
 lastof(planned_targets) do begin
 planned_targets[i] := major_targets[i] * dollars_per_tourist
 end;

 for i := firstof(continents) to lastof(continents) do begin
 writeln(i, ' is the goal of ', planned_targets[i]: 1,
 ' dollars per tourist.')
 end

end. { firstof_example }

The commands to compile and
execute firstof.p

hostname% pc firstof.p
hostname% a.out
North_America is the goal of 2000 dollars per tourist.
South_America is the goal of 300 dollars per tourist.
Asia is the goal of 1500 dollars per tourist.
Europe is the goal of 2500 dollars per tourist.
Africa is the goal of 500 dollars per tourist.
Australia is the goal of 100 dollars per tourist.
Antarctica is the goal of 0 dollars per tourist.

130 Pascal Language Reference

6

flush

The flush procedure writes the output buffer for the specified Pascal file into
the associated file.

Syntax

flush (file)

Arguments

file is a file having the text or file data type.

Return Value

flush does not return any values.

Comments

The flush procedure causes the compiler to write all characters buffered for
output to the specified file.

For example, in the following code fragment, the compiler writes the output
integer i to the file f when it encounters flush :

flush does not append a newline character after writing the data. See also the
output procedures, message , write , and writeln .

for i := 1 to 5 do begin
write(f,i);
Compute a lot with no output

 end;
flush(f);

Built-In Procedures and Functions 131

6

Example

flush.p (Screen 1 of 2)

The Pascal program, flush.p program flush_example(output);

{ This program demonstrates the use of the
 flush procedure. }

const
 NAME = 'flush.txt';
var
 i: integer;
 f1, f2: text;

procedure read_file;
var
 i: integer;
begin
 reset(f2, NAME);
 writeln('Beginning of file.');
 while not eof(f2) do begin
 while not eoln(f2) do begin
 read(f2, i);
 writeln(i)
 end;
 readln(f2)
 end;
 writeln('End of file.');
 writeln
end; { read_file }

132 Pascal Language Reference

6

flush.p (Screen 2 of 2)

getenv

The getenv function returns the value associated with an environment name.

begin { main program }
 rewrite(f1, NAME);
 for i := 1 to 10 do
 write(f1, i);

 { At this point the file is still empty. }
 read_file;

 flush(f1);

 { Now the file contains data after the flush. }
 read_file
end. { flush_example }

The commands to compile and
execute flush.p

hostname% pc flush.p
hostname% a.out
Beginning of file.
End of file.

Beginning of file.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10

End of file.

Built-In Procedures and Functions 133

6

Syntax

getenv (string, string_variable)

Arguments

string is either a constant string, a variable-length string, or a character array.
string_variable is a variable-length string or a character array.

Return Value

getenv returns a variable-length string or a character array.

Comments

The variable string is an environment name. Pascal returns the value for the
environment name through the parameter, string_variable.

string must match the environment exactly, and trailing blanks are significant.
If string is a character array, you may want to use the trim function.

If there are no environment names with the value string, the value of
string_variable is the null string if string_variable is a variable-length string. If
string_variable is a character array, it is padded with blanks.

See the Solaris documentation for a complete description of environment
variables.

134 Pascal Language Reference

6

Example

getfile

The getfile function returns a pointer to the C standard I/O descriptor
associated with a Pascal file.

Syntax

getfile (file)

Arguments

file is a file having the text or file data type. file must be associated with an
open file; otherwise, getfile returns nil .

The Pascal program, getenv.p program getenv_example;

{ This program demonstrates the use of the
 getenv function. }

var
 namev: varying [10] of char := 'EDITOR';
 names: array [1..10] of char := 'EDITOR';
 valv: varying [20] of char;

begin
 getenv(namev, valv);
 writeln(namev, ' = ', valv);
 getenv(trim(names), valv);
 writeln(names, ' = ', valv)
end. { getenv_example }

The commands to compile and
execute getenv.p

hostname% pc getenv.p
hostname% a.out
EDITOR = /usr/ucb/vi
EDITOR = /usr/ucb/vi

Built-In Procedures and Functions 135

6

Return Value

getfile returns a value of type univ_ptr .

Comments

You can use the result of getfile for files opened with either the reset ,
rewrite , or open procedures, placing the return value as a parameter to a C
I/O routine. Use extreme caution when you call getfile ; directly calling C
I/O routines circumvents bookkeeping data structures in the Pascal I/O
library.

As a general rule, calling C routines for writing is safe. Using the return value
for calling C routines for reading may cause subsequent eoln , eof , or readln
calls to produce errors for that file.

Example

The Pascal program,
getfile.p

program getfile_example;

{ This program demonstrates the use of the getfile function. }

type
 char_array = array [1..30] of char;

var
 f: text;
 cfile: univ_ptr;

procedure fprintf(cf: univ_ptr; in format: char_array;
 in year: integer); external c;

begin { main program }
 rewrite(f, 'output.data');
 cfile := getfile(f);
 fprintf(cfile, 'Hello, world, in the year %d .', 1996)
end. { getfile_example }

136 Pascal Language Reference

6

halt

The halt procedure terminates program execution.

Syntax

halt

Arguments

halt does not take any arguments.

Return Values

halt does not return any values.

Comments

You can use halt anywhere in a program to terminate execution. When
execution of a program encounters a halt , it prints the following message:

Call to procedure halt

Pascal returns to command level after it executes halt .

The commands to compile and
execute getfile.p

hostname% pc getfile.p
hostname% a.out
hostname% more output.data
Hello, world, in the year 1996 .

Built-In Procedures and Functions 137

6

Example

The Pascal program, halt.p program halt_example(input, output);

{ This program calculates a factorial. }

var
 x, y: integer;

function factorial(n: integer): integer;

begin
 if n = 0 then
 factorial := 1
 else
 factorial := n * factorial(n - 1)
end; { factorial } { factorial }

begin { main program }
 write('Enter a positive integer from 0 to 16: ');
 readln(x);
 if (x >= 0) and (x <= 16) then begin
 y := factorial(x);
 write('The factorial of ', x: 1);
 writeln(' is ', y: 1, '.')
 end else begin
 writeln('Illegal input.');
 halt
 end
end. { halt_example }

The commands to compile and
execute halt.p

hostname% pc halt.p
hostname% a.out
Enter a positive integer from 0 to 16: 8
The factorial of 8 is 40320.
hostname% a.out
Enter a positive integer from 0 to 16: 20
Illegal input.
Call to procedure halt

138 Pascal Language Reference

6

in_range

The in_range function checks if a value is in the defined subrange.

Syntax

in_range (x)

Arguments

x is an integer, boolean , character, enumerated, or subrange data type.

Return Value

in_range returns a boolean value.

Comments

in_range returns true if x is in the defined range, false if x is outside the
range.

in_range is useful for doing a runtime check to see if x has a valid value.
in_range is especially helpful for checking enumerated and subrange types.
However, this feature does not work for 32-bit integer values.

If you compile your program with the –C option, the compiler also generates
code that does range checking. However, if the variable is out of range, the
program terminates. By using in_range instead, you can control subsequent
execution of your program.

Built-In Procedures and Functions 139

6

Example

index

The index function returns the position of the first occurrence of a string or
character within another string.

Syntax

index (target_string, pattern_string)

The Pascal program,
in_range.p

program in_range_example(input, output);

{ This program demonstrates the use of the in_range function . }

type
 positive = 1..maxint;

var
 base, height: positive;
 area: real;

begin
 write('Enter values for triangle base and height: ');
 readln(base, height);
 if in_range(base) and in_range(height) then begin
 area := base * height / 2;
 writeln('Area is ', area: 5: 2, '.')
 end else
 writeln('Cannot compute negative areas.')
end. { in_range_example }

The commands to compile and
execute in_range.p

hostname% pc in_range.p
hostname% a.out
Enter values for triangle base and height: 4 5
Area is 10.00.

140 Pascal Language Reference

6

Arguments

target_string is a constant string, variable-length string, or an array of character.

pattern_string is a constant string, variable-length string, an array of character,
or a character.

Return Value

index returns an integer value that represents the position of the first
occurrence of pattern_string within target_string. If the first occurrence is at the
starting position of the original string, the returned index value is 1.

Comments

The leftmost occurrence of the pattern-string is considered the first occurrence.

If the pattern_string is not found in the target_string, index returns 0. If
pattern_string is the null string, index returns –1 .

Example

See the example that follows.

Built-In Procedures and Functions 141

6

The Pascal program, index.p program index_example;

{ This program demonstrates the use of
 the index function. }

const
 MAX = 20;
 STRING = 'FOO';

type
 char_array = varying [MAX] of char;

var
 s1: char_array := 'INDEX_EXAMPLE';
 s2: char_array := 'EXAMPLE';
 i: integer16;

procedure print(index: integer; s1: char_array;
 s2: char_array);

begin
 if index = 0 then begin
 write('The string ', s2, ' is not');
 writeln(' in the string ', s1, '.')
 end else begin
 write('The string ', s2, ' is at index ', i: 1);
 writeln(' in the string ', s1, '.')
 end
end; { print } { print } { print }

begin { main program }
 i := index(s1, s2);
 print(i, s1, s2);
 i := index(s1, STRING);
 print(i, s1, STRING)
end. { index_example }

The commands to compile and
execute index.p

hostname% pc index.p
hostname% a.out
The string EXAMPLE is at index 7 in the string INDEX_EXAMPLE.
The string FOO is not in the string INDEX_EXAMPLE.

142 Pascal Language Reference

6

land

The land function returns the bitwise and of two integer values.

Syntax

land (int1, int2)

Arguments

int1 and int2 are integer expressions.

Return Value

land returns an integer value.

Comments

land performs a bit-by-bit and operation, as shown in Table 6-10.

Table 6-10 land Truth

If int1 and int2 are different size integers, Pascal converts the smaller integer to
the larger integer before it performs the land operation.

land produces the same results as the bitwise operator &. Do not confuse
land with the boolean operator and , which finds the logical and of two
boolean expressions.

Value of Bit in int1 Value of Bit in int2 Value of Bit in result

0 0 0

0 1 0

1 0 0

1 1 1

Built-In Procedures and Functions 143

6

Example

The Pascal program, land.p program land_example;

{ This program demonstrates the use of the land, lor,
 lor, and xor functions. }

procedure BinaryOutput(intval: integer32);

var
 i: integer32;

begin
 write(' Decimal : ', intval, ' Binary : ');
 for i := 31 downto 0 do begin
 if lsr(intval, i) mod 2 = 0 then
 write('0')
 else
 write('1')
 end;
 writeln
end; { BinaryOutput }

var
 ival1, ival2: integer32;

begin
 ival1 := 2#00000000000000000000000000001111;
 ival2 := 2#00000000000000000000000011111111;
 writeln('IVAL1');
 BinaryOutput(ival1);
 writeln('IVAL2');
 BinaryOutput(ival2);
 writeln('LNOT(IVAL1)');
 BinaryOutput(lnot(ival1));
 writeln('LAND(IVAL1,IVAL2)');
 BinaryOutput(land(ival1, ival2));
 writeln('LOR(IVAL1,IVAL2)');
 BinaryOutput(lor(ival1, ival2));
 writeln('XOR(IVAL1,IVAL2)');
 BinaryOutput(xor(ival1, ival2))
end. { land_example }

144 Pascal Language Reference

6

lastof

The lastof function returns the value of the upper bound when its argument
is or has an ordinal type. For array types, lastof returns the upper bound for
the subrange defining the array index. For set types, it returns the upper
bound of the set base type.

Syntax

lastof (x)

Arguments

x is either a variable, a constant, an expression, or the name of a user-defined
or predeclared Pascal data type. x cannot be a record, a file, a pointer type, a
conformant array, a procedure or function parameter, or a string literal.

Return Value

When x is an ordinal type, a constant, an expression, or variable, the value
lastof returns has the same data type as its argument.

When x is an array, the value lastof returns has the same data type as the
type of the array index.

The commands to compile and
execute land.p . The value the
bit-shift routines return may
depend upon the architecture of
your system.

hostname% pc land.p
hostname% a.out
IVAL1
 Decimal : 15 Binary : 00000000000000000000000000001111
IVAL2
 Decimal : 255 Binary :00000000000000000000000011111111
LNOT(IVAL1)
 Decimal : -16 Binary :11111111111111111111111111110000
LAND(IVAL1,IVAL2)
 Decimal : 15 Binary : 00000000000000000000000000001111
LOR(IVAL1,IVAL2)
 Decimal : 255 Binary :00000000000000000000000011111111
XOR(IVAL1,IVAL2)
 Decimal : 240 Binary :00000000000000000000000011110000

Built-In Procedures and Functions 145

6

When x is a set type, the value lastof returns has the same data type as the
base type of the set.

Comments

Pascal follows the rules in Table 6-11 when returning the value of x.

Table 6-11 lastof Return Values

Example

See the example under firstof on page 126.

length

The length function returns the length of a string.

Syntax

length (str)

Type of Argument Return Value

integer (without –xl) 2,147,483,647

integer (with –xl) 32,767

integer16 32,767

integer32 2,147,483,647

char chr(255)

boolean true

enumerated The last element in the enumeration type declaration.

array The upper bound of the subrange that defines the array size.

varying The upper bound of the varying string.

set of 'A'..'Z' The character Z.

146 Pascal Language Reference

6

Arguments

str is a variable-length string, a character array, or a character-string constant.

Return Value

length returns an integer value.

Comments

length returns a value that specifies the length of str.

Example

The Pascal program, length.p program length_example(output);

{ This program demonstrates the use of the length function. }

var
 s1: array [1..15] of char;
 s2: varying [20] of char;
begin
 s1 := 'San Francisco ';
 s2 := 'California';
 writeln('The length of string one is ', length(s1): 2, '.');
 writeln('The length of string two is ', length(s2): 2, '.');
 writeln('The combined length is ', length(s1 + s2): 2, '.')
end. { length_example }

The commands to compile and
execute length.p

hostname% pc length.p
hostname% a.out
The length of string one is 15.
The length of string two is 10.
The combined length is 25.

Built-In Procedures and Functions 147

6

linelimit

The linelimit procedure terminates execution of a program after a specified
number of lines has been written into a text file.

Syntax

linelimit (file, n)

Arguments

file is a file having the text or file data type.

n is a positive integer expression.

Return Value

linelimit does not return any values.

Comments

linelimit terminates program execution if more than n lines are written to
file f. If n is less than zero, no limit is imposed.

linelimit has no effect unless you compile your program with the –C
option.

148 Pascal Language Reference

6

Example

The Pascal program,
linelimit.p

program linelimit_example;

{ This program demonstrates the use of the
 linelimit procedure. }

const
 FILE = 'linelimit.dat';

var
 infile: text;
 error: integer32;
 name: array [1..20] of char;

begin
 open(infile, FILE, 'unknown', error);
 rewrite(infile, FILE);
 if error = 0 then begin
 writeln('Enter the names of your children.');
 writeln('The last entry should be "0".');
 repeat
 readln(name);
 writeln(infile, name);
 linelimit(infile, 10)
 until name = '0';
 close(infile)
 end else begin
 writeln('Difficulty opening file.');
 writeln('Error code = ', error, '.')
 end
end. { linelimit_example }

Built-In Procedures and Functions 149

6

lnot

The lnot function returns the bitwise not of an integer value.

Syntax

lnot (int)

Arguments

int is an integer expression.

Return Value

lnot returns an integer value.

Comments

lnot performs a bit-by-bit not operation, as shown in Table 6-12.

The commands to compile and
execute linelimit.p

hostname% pc -C linelimit.p
hostname% a.out
Enter the names of your children.
The last entry should be "0".
Ryan
Matthew
Jennifer
Lynne
Lisa
Ann
Katherine
Devon
Geoffrey
Bria

linelimit.dat : Line limit exceeded
*** a.out terminated by signal 5: SIGTRAP
*** Traceback being written to a.out.trace
Abort (core dumped)

150 Pascal Language Reference

6

Table 6-12 lnot Truth

lnot produces the same results as the bitwise operator ~. Do not confuse
lnot with the boolean operator not , which evaluates the logical not of a
boolean expression.

Example

See the example under land on page 142.

lor

The lor function returns the inclusive or of two integer values.

Syntax

lor (int1, int2)

Argument

int1 and int2 are integer expressions.

Return Value

lor returns an integer value.

Comments

lor performs an inclusive or , as shown in Table 6-13.

Value of Bit in int Value of Bit in result

0 1

1 0

Built-In Procedures and Functions 151

6

Table 6-13 lor Truth

If int1 and int2 are different size integers, Pascal converts the smaller integer to
the larger integer before it performs the lor operation.

lor produces the same results as the bitwise operators ! and | . Do not
confuse lor with the boolean operator or , which evaluates the logical or of
a boolean expression.

Example

See the example under land on page 142.

lshft

The lshft function does a logical left shift of an integer value.

Syntax

lshft (num, sh)

Argument

num and sh are integer expressions.

Return Value

lshft returns a 32-bit integer value.

Value of Bit in intl1 Value of Bit in int2 Value of Bit in result

0 0 0

0 1 1

1 0 1

1 1 1

152 Pascal Language Reference

6

Comments

lshft shifts all bits in num sh places to the left. lshft does not wrap bits
from the left to right. The value lshft returns is machine-dependent and is
unspecified unless 0 <= sh <= 32 .

Do not confuse lshft with the arithmetic left shift functions which preserve
the sign bit.

The Pascal program, lshft.p program lshft_example(input, output);

{ This program does a logical left shift. }

const
 SIZE = 8;

var
 i: integer32;
 i32: integer32;
 loop: integer32;

begin
 write('Enter a positive or negative integer: ');
 readln(i);
 for loop := 1 to SIZE do begin
 i32 := lshft(i, loop);
 write('Logical left shift ', loop: 2);
 writeln(' bit(s): ', i32 hex)
 end
end. { lshft_example }

Built-In Procedures and Functions 153

6

lsl

The lsl function is identical to the lshft function. See the lshft listing on
page 151.

lsr

The lsr function is identical to the rshft function. See the rshft listing on
page 171.

max

The max function evaluates two scalar expressions and returns the larger one.

Syntax

max(exp1, exp2)

Arguments

exp1 and exp2 are any valid scalar expressions that are assignment-compatible.

Return Value

max returns the same or the converted type of exp1 and exp2.

The commands to compile and
execute lshft.p . The value
the bit-shift routines return may
depend upon the architecture of
your system.

hostname% pc lshft.p
hostname% a.out
Enter a positive or negative integer: 3
Logical left shift 1 bit(s): 6
Logical left shift 2 bit(s): C
Logical left shift 3 bit(s): 18
Logical left shift 4 bit(s): 30
Logical left shift 5 bit(s): 60
Logical left shift 6 bit(s): C0
Logical left shift 7 bit(s): 180
Logical left shift 8 bit(s): 300

154 Pascal Language Reference

6

See also the min listing on page 156.

Example

The Pascal program, max.p program max_example(input, output);

{ This program reads in 10 positive integers
 in the range 1 through 501 and determines
 the largest even and smallest odd.Out of range numbers
 are rejected. }

var
 smallest_odd: integer := 501;
 largest_even: integer := 0;
 number, counter: integer;

begin
 writeln('Please enter 10 integers between 0 and 501:');
 for counter := 1 to 10 do begin
 read(number);
 if (number < 0) or (number > 501)
 then writeln ('The number is out of range ')
 else if odd(number)
 then smallest_odd := min(number, smallest_odd)
 else
 largest_even := max(number, largest_even)
 end;
 writeln('The smallest odd number is ', smallest_odd: 1, '.');
 writeln('The largest even number is ', largest_even: 1, '.')
end. { max_example }

Built-In Procedures and Functions 155

6

message

The message procedure writes the specified information on stderr (usually
the terminal).

Syntax

message (x1, ..., xN)

Arguments

x is one or more expressions separated by commas. x can be a variable,
constant, or expression of a type that write accepts (such as integer, real ,
character, boolean , enumerated, or string). x cannot be a set variable.

Return Value

message does not return any values.

Comments

message is an output procedure similar to write and writeln . Whereas
write and writeln send the output to standard output or the specified file,
message sends the output to standard error. message also appends a
carriage return to the message.

message flushes all buffers both before and after writing the message.

message(x1, ..., xN) is equivalent to the following code:

The commands to compile and
execute max.p

hostname% pc max.p
hostname% a.out
Please enter 10 integers between 0 and 501:
56 431 23 88 222 67 131 337 401 99
The smallest odd number is 23.
The largest even number is 222.

156 Pascal Language Reference

6

Example

min

The min function evaluates two scalar expressions and returns the smaller one.

Syntax

min (exp1, exp2)

writeln(errout, x1, ..., xN);
flush(errout);
flush(output);
 .
 .
 { Flush all open files. }

The Pascal program,
message.p

program message_example(output);

{ This program demonstrates the use of the
 message function. }

begin
 writeln('This message will go to standard output.');
 message('This message will go to standard error.')
end. { message_example }

The commands to compile and
execute message.p

hostname% pc message.p
hostname% a.out > temp_file
This message will go to standard error.
hostname% cat temp_file
This message will go to standard output.
hostname% a.out >& temp_file
hostname% cat temp_file
This message will go to standard output.
This message will go to standard error.

Built-In Procedures and Functions 157

6

Arguments

exp1 and exp2 are any valid scalar expressions that are assignment-compatible.

Return Value

min returns the same or the converted type of exp1 and exp2.

Comments

See also the max listing on page 153.

Example

See the example under the max listing on page 153.

null

The null procedure performs no operation.

Syntax

null

Arguments

null does not take any arguments.

Return Value

null does not return any values.

Comments

null does absolutely nothing; it is useful as a placeholder. For example,
suppose you are developing a program, and you are uncertain about a
particular case statement, you could put null in place of the case statement,
then replace it later with an actual function or procedure.

158 Pascal Language Reference

6

open

The open procedure associates an external file with a file variable.

Syntax

open (file, pathname, history, error, buffer)

Arguments

open takes the following arguments:

• file is a variable having the text or file data type.
• pathname is a string constant or string variable.
• history is a string variable.
• error is an integer32 variable. This argument is optional.
• buffer is an optional integer variable. This argument is currently ignored.

Return Value

open does not return any values.

Comments

open associates the permanent file file with a file variable for reading or
writing. open does not actually open the file; you must call reset or
rewrite before reading or writing to that file.

pathname must be one of the following:

• An operating system path name.

• A string of '^ n' , where n is an integer from 1 to 9. n represents the nth
argument passed to the program. ^n is equivalent to argv(n, file) .

• A prompt string. The string must begin with the character '* '. Pascal prints
the prompt string on the standard output at runtime.

• The string '-STDIN' or '-STDOUT.'

• A variable or constant that contains any of the above items.

Built-In Procedures and Functions 159

6

history instructs the compiler whether to create the file or what to do with it if
it exists. history must be one of these values:

Pascal returns an integer error code through error, as shown in Table 6-14.

Table 6-14 open Error Codes

Pascal automatically closes all open files when your program terminates or
when the program exits the scope in which the file variable for the open file is
allocated. See also the close , reset , and rewrite procedures.

'new' Associates the operating system file with a new file. The compiler
generates an error if the file already exists.

'old' Associates the operating system file with an existing file. The
compiler generates an error if the file does not exist. This option
first tries to open the file for writing. Failing to do so, it tries to
open it for reading only.

'unknown' Searches for an existing file and associate it with the operating
system file. The compiler creates the file if it does not exist.

Number Description

0 open is successful.

1 File not specified on the command-line. For example, this error is
generated for the following line when argument one is not specified:

open(infile,'^1','new',Error);

2 Unable to open file.

3 Invalid history specified. history must be either 'new', 'old ', or
'unknown '.

160 Pascal Language Reference

6

The Pascal program, open.p program open_example;

{ This program demonstrates the use of the open procedure. }

const
 name_of_file = 'open1.txt';
 file3 = '*Enter_a_filename-- ';

type
 char_array = varying [50] of char;

var
 infile: text;
 error: integer32;
 name: char_array;

begin
 { Open an existing file. }
 open(infile, name_of_file, 'old', error);
 if error = 0 then begin
 writeln('Opened ', name_of_file, ' for reading.');
 close(infile)
 end else
 writeln('Error opening file', name_of_file, error);

 { Open a file specified by a command line argument. }
 open(infile, '^1', 'unknown', error);
 if error = 0 then begin
 argv(1, name);
 writeln('Opened ', name, ' for reading.');
 close(infile)
 end else
 writeln('No command line argument; error code =', error);

 { Open a file that may or may not exist. }
 { Prompt user for name of file at runtime. }
 open(infile, file3, 'unknown', error);
 if error = 0 then begin
 writeln('Opened file for reading.');
 close(infile)
 end else
 writeln('Error opening file', error)
end. { open_example }

Built-In Procedures and Functions 161

6

pcexit

The pcexit function:

• Checks whether any imposed statement count has been exceeded.

• Calls the ieee_retrospective () routine. See the Solaris
documentation for details.

• Terminates the program with the specified return value (similar to the C
exit() function).

Syntax

pcexit (x)

Arguments

x is an integer variable or constant.

Return Value

pcexit does not return any values.

Comments

The C function exit (3C) calls any functions registered through the
atexit (3C) function in the reverse order of their registration.

The commands to compile and
execute open.p

hostname% pc open.p
hostname% a.out
Opened open1.txt for reading.
No command line argument; error code = 1
Enter_a_filename-- test.txt
Opened file for reading.

162 Pascal Language Reference

6

random

The random function generates a random number between 0.0 and 1.0.

Syntax

random (x)

Arguments

x has no significance and is ignored.

Return Value

random returns a real value.

Comments

random generates the same sequence of numbers each time you run the
program. See the seed function on page 172 to reseed the number generator.

Built-In Procedures and Functions 163

6

Example

read and readln

Pascal supports the standard form of read and readln with three extensions:

• Read in boolean variables.
• Read in fixed- and variable-length strings.
• Read in enumerated type values from a text file.

Syntax

read (file, var1 ..., varN);

readln (file, var1 ..., varN);

The Pascal program, random.p program random_example(output);

{ This program demonstrates the use of
 the random function. }

var
 i: integer;
 x: integer;

begin
 writeln('These numbers were generated at random:');
 for i := 1 to 5 do begin
 write(trunc(random(x) * 101))
 end;
 writeln
end. { random_example }

The commands to compile and
execute random.p

hostname% pc random.p
hostname% a.out
These numbers were generated at random:
 97 6 48 91 35

164 Pascal Language Reference

6

Arguments

file is an optional variable having either the text or file data type.

var can be any real , integer, character, boolean , subrange, enumerated, or
array variable or a fixed- or variable-length string variable. If read or readln
is used in a function to define the function result, var can also be an identifier
of that function.

Return Value

read and readln do not return any values.

Comments

If var is a variable-length string, read and readln try to read in as many
characters as indicated by the current length, up to the first newline character.
read and readln do not pad the string with blanks if the length of the string
is less than the current length.

With both variable- and fixed-length strings, if the number of characters on a
line is more than the maximum length of the string, the next read picks up
where the last read left off. With readln , the rest of the line is discarded, so
the next read or readln begins at the next line.

If var is an enumerated type, read and readln attempt to read a value that is
included in the type definition. If the value is not in the type definition, the
compiler terminates program execution and prints the following error
message:

Unknown name " value" found on enumerated type read
Trace/BPT trap (core dumped)

You can trap this error with the I/O error recovery mechanism, described in
“I/O Error Recovery” on page 214. Using read or readln in the block of a
function in the form:

read (..., f, ...)

is treated as if it were an assignment of the form:

f:=e

Built-In Procedures and Functions 165

6

where e is the input value. This feature is an extension of the Pascal Standard,
and so cannot be used with the -s option.

Example

The Pascal program, read.p program read_example(input, output);

{ This program uses readln to input strings,
 boolean data, and enumerated data. }

type
 gem_cuts = (marquis, emerald, round, pear_shaped);

var
 x: gem_cuts;
 gem: varying [10] of char;
 gift: boolean;

begin
 write('Enter type of gem: ');
 readln(gem);
 write('Enter cut: ');
 write('marquis, emerald, round, pear_shaped: ');
 readln(x);
 write('Enter true if this a gift, false if it is not: ');
 readln(gift);
 write('You have selected a ', gem);
 writeln(' with a ', x, ' cut.');
 if gift then
 writeln('We will gift wrap your purchase for you.')
end. { read_example }

The commands to compile and
execute read.p

hostname% pc read.p
hostname% a.out
Enter type of gem: diamond
Enter cut: marquis, emerald, round, pear_shaped: pear_shaped
Enter true if this a gift, false if it is not: true
You have selected a diamond with a pear_shaped cut.
We will gift wrap your purchase for you.

166 Pascal Language Reference

6

remove

The remove procedure removes the specified file.

Syntax

remove (file)

Arguments

file is either a fixed- or variable-length string that indicates the name of the file
to be removed. file cannot be a text or file variable.

Return Value

remove does not return any values.

Comments

Pascal generates an I/O error if the file does not exist. You can trap this error
with the I/O error recovery mechanism, described in “I/O Error Recovery” on
page 214.

Built-In Procedures and Functions 167

6

Example

reset

Pascal supports an optional second argument to the reset procedure. This
argument gives an operating system file name.

Syntax

reset (file, filename)

The Pascal program, remove.p program remove_example;

{ This program demonstrates the use of the
 remove procedure. }

var
 name: varying [10] of char;

begin
 if argc <> 2 then
 writeln('Usage is : rm <file>')
 else begin
 argv(1, name);
 remove(name)
 end
end. { remove_example }

The commands to compile and
execute remove.p

hostname% pc remove.p
hostname% touch rmc
hostname% ls rmc
rmc
hostname% a.out rmc
hostname% ls rmc
rmc not found

168 Pascal Language Reference

6

Arguments

file is a variable having the text or file data type.

filename is a fixed- or variable-length string, or a string constant.

Return Value

reset does not return any values.

Comments

reset gives you permission to read from the file, but not to write to the file.

In standard Pascal, reset takes only one argument, a file variable. In Pascal,
reset can take an optional second argument, an operating system file name.
If you give the optional file name, the compiler opens the file with that name
on the current path and associates it with the given file variable.

For example, this code associates the Pascal file data with the operating
system file primes :

reset(data, 'primes');

reset does an implicit close on the file, hence you can reuse its file variable
with a different file. Similarly, if input or output is reset, the current
implementation of the product also implicitly closes stdin and stdout .

reset normally generates an error and halts if the file specified in the two
argument form does not exist. You can trap this error with the I/O error
recovery mechanism, described in “I/O Error Recovery” on page 214.

See also the section on “rewrite,” which opens a file for writing.

Example

See the example in the rewrite listing that follows.

rewrite

Pascal supports an optional second argument to the rewrite procedure. This
argument gives an operating system file name.

Built-In Procedures and Functions 169

6

Syntax

rewrite (file, filename)

Arguments

file is a variable having the text or file data type.

filename is a fixed- or variable-length string, or a string constant.

Return Value

rewrite does not return any values.

Comments

rewrite gives you permission to modify a file.

• In standard Pascal, rewrite takes only one argument—a file variable.

• In Pascal, rewrite can take an optional second argument, an operating
system file name.

In Pascal, if you give the optional file name, the compiler opens the file with
that name on the current path and associates it with the given file variable. For
example, this code associates the Pascal file data with the operating system
file primes :

rewrite(data, 'primes');

If you do not give an optional second argument, Pascal creates a physical
operating system file for you. This file has the same name as the file variable if
the file variable is listed in the program header. If the file variable is not listed
in the program header, Pascal creates a temporary file with the name
#tmp. suffix. The temporary file is deleted when the program terminates.

If the file variable is output , and the second argument is not given, Pascal
creates a temporary file, but does not delete it after the program exits.

rewrite does an implicit close on the file, thus you can reuse its file variable
with a different file.

See also the section on “reset,” which opens a file for reading.

170 Pascal Language Reference

6

Example

The Pascal program, rewrite.p program rewrite_example(input, output);

{ This program demonstrates the use of rewrite
 and reset.}

const
 MAX = 80;

var
 f: text;
 line: varying [MAX] of char;

begin
 rewrite(f, 'poem.txt');
 write('Enter a line of text.');
 writeln(' Hit Control-D to end the job.');
 while not eof do begin
 readln(line);
 writeln(f, line)
 end;
 close(f);
 writeln;
 writeln;
 writeln('These are the lines of text you input:');
 reset(f, 'poem.txt');
 while not eof(f) do begin
 readln(f, line);
 writeln(line)
 end;
 close(f)
end. { rewrite_example }

Built-In Procedures and Functions 171

6

rshft

The rshft function does a logical right shift of an integer value.

Syntax

rshft (num, sh)

Arguments

num and sh are integer expressions.

Return Value

rshft returns a 32-bit integer value.

Comments

rshft shifts the bits in num sh spaces to the right. rshft does not preserve
the sign bit (leftmost) bit of a number and does not wrap bits from right to left.
The value rshft returns is machine-dependent, and is unspecified unless
0 <= sh <= 32 . Do not confuse rshft with the arithmetic right shift
functions asr and arshft , which preserve the sign bit.

The commands to compile and
execute rewrite.p

hostname% pc rewrite.p
hostname% a.out
Enter a line of text. Hit Control-D to end the job.
Hello, how are you?
Please keep in touch
 ^D

These are the lines of text you input:
Hello, how are you?
Please keep in touch.

172 Pascal Language Reference

6

seed

The seed function reseeds the random number generator.

The Pascal program, rshft.p program rshft_example(input, output);

{ This program demonstrates the logical right shift. }

const
 SIZE = 8;

var
 i: integer32;
 i32: integer32;
 loop: integer32;

begin
 write('Enter a positive or negative integer: ');
 readln(i);
 for loop := 1 to SIZE do begin
 i32 := rshft(i, loop);
 write('Logical right shift ', loop: 2);
 writeln(' bit(s): ', i32 hex)
 end
end. { rshft_example }

The commands to compile and
execute rshft.p . The value
the bit-shift routines return may
depend upon the architecture of
your system.

hostname% pc rshft.p
hostname% a.out
Enter a positive or negative integer: 32
Logical right shift 1 bit(s): 10
Logical right shift 2 bit(s): 8
Logical right shift 3 bit(s): 4
Logical right shift 4 bit(s): 2
Logical right shift 5 bit(s): 1
Logical right shift 6 bit(s): 0
Logical right shift 7 bit(s): 0
Logical right shift 8 bit(s): 0

Built-In Procedures and Functions 173

6

Syntax

seed (x)

Arguments

x is an integer value.

Return Value

seed returns an integer value.

Comments

seed sets the random number generator to x and returns the previous seed. If
you do not reseed the random number generator, the random function returns
the same sequence of random numbers each time you run the program. To
produce a different random number (sequence each time the program is run),
set the seed with the following statement:

x := seed(wallclock);

Example

See the example that follows.

174 Pascal Language Reference

6

seek

The seek procedure changes the current position in the file.

Syntax

seek (file, pos)

Arguments

file is a variable with the text or file data type.

pos is a positive integer.

The Pascal program, seed.p program seed_example(output);

{ This program demonstrates the use of the
 seed function. }

var
 i: integer;
 x: integer;
begin
 x := seed(wallclock);
 writeln('These numbers were generated at random:');
 for i := 1 to 5 do begin
 write(trunc(random(i) * (i * 101)))
 end;
 writeln
end. { seed_example }

The commands to compile and
execute seed.p

hostname% pc seed.p
hostname% a.out
These numbers were generated at random:
 75 175 186 260 178

Built-In Procedures and Functions 175

6

Return Value

seek does not return any values.

Comments

The seek procedure is a facility to support random access input/output. It
changes the position of a given file that is open for reading or writing.

You can use seek with text files of text type, or binary files of a certain file
of T type.

For a binary file of type file of T , the argument pos denotes the number of
the element of type T, which becomes the new position of file. Elements are
numbered from 0. The argument pos can have an arbitrary non-negative value.

If file is open for writing, and pos exceeds the size of the file, the file is
appended by the corresponding number of elements of type T with undefined
values. For example, if filesize(f) = 0 , then after seek(f,100) and
write(f,x) , the result is: filesize(f) = 101 .

If file is open for reading, seek does not detect an error in seeking an element
with a non-existing number. The compiler may detect this error later, however,
when it performs the read procedure.

For a text file, you can use seek only in the following forms:

seek(file, 0) or seek(file, tell(file))

That is, seek can only set the current position to the beginning of the file or
have it stay “as is,” otherwise an error occurs. Hence, the only correct way of
processing a text file in Pascal is reading or writing it successively, line by line.

See also the sections: “filesize,” and “tell.”

176 Pascal Language Reference

6

Example

sizeof

sizeof returns the number of bytes the program uses to store a data object.

Syntax

sizeof (x, tag1, ... tagN)

The Pascal program, seek.p program seek_example;
var
 f: file of integer;
 i: integer;
begin
 rewrite(f);
 for i:= 0 to 9 do
 write(f, i);
 writeln('Initial size of f =', filesize(f) :3, ' elements');
 reset(f);
 seek(f, 4);
 read(f, i);
 writeln('The 4th element of f =', i :3);
 rewrite(f);
 write(f, i);
 seek(f, 100);
 write(f, i);
 writeln('Final size of f =', filesize(f):3, ' elements');
 close(f);
end. { seek_example }

The commands to compile and
execute seek.p

hostname% pc seek.p
hostname% a.out
Initial size of f = 10 elements
The 4th element of f = 4
Final size of f =101 elements

Built-In Procedures and Functions 177

6

Arguments

x is any predeclared or user-defined Pascal data type, a variable, a constant, or
a string.

tag is a constant. This argument is optional.

Return Value

sizeof returns an integer value.

Comments

sizeof returns the number of bytes in the data object x. tags correspond to
the fields in a variant record. tags are effectively ignored because Pascal
allocates records according to the largest variant.

You cannot use sizeof to determine the size of a conformant array parameter
because the array size is not known until runtime. The difference between the
size of a constant string and that of a varying string variable to which the
string is assigned. For example:

sizeof ('') = 0

However, if S is defined as follows:

then sizeof (S) = 16 . Moreover,

sizeof (''+'') = 4

because the '+' string operator returns a varying string object.

var S: varying [12] of char;
begin
 S:='';

178 Pascal Language Reference

6

Example

sizeof.p Program (Screen 1 of 2)

The Pascal program, sizeof.p program sizeof_example(output);

{ This program demonstrates the use of the
 sizeof function. }

const
 MAX = 5;

type
 subB = false..true;
 sub1 = 0..7;
 sub2 = 0..127;
 sub3 = 0..255;
 color1 = (re, gree, blu, whit);
 color2 = (red, green, blue, white, orange, purple, black);
 rec_type =
 record
 i: integer;
 ar: array [1..MAX] of single;
 d: double
 end;

var
 b: boolean;
 c: char;
 f: text;
 i: integer;
 i16: integer16;
 i32: integer32;
 s: shortreal;
 r: real;
 l: longreal;
 rec: rec_type;
 u: univ_ptr;

Built-In Procedures and Functions 179

6

sizeof.p Program (Screen 2 of 2)

begin
 writeln('The size of boolean is ', sizeof(b), '.');
 writeln('The size of char is ', sizeof(c), '.');
 writeln('The size of color1 is ', sizeof(color1), '.');
 writeln('The size of color2 is ', sizeof(color2), '.');
 writeln('The size of file is ', sizeof(f), '.');
 writeln('The size of integer is ', sizeof(i), '.');
 writeln('The size of integer16 is ', sizeof(i16), '.');
 writeln('The size of integer32 is ', sizeof(i32), '.');
 writeln('The size of longreal is ', sizeof(l), '.');
 writeln('The size of shortreal is ', sizeof(s), '.');
 writeln('The size of real is ', sizeof(r), '.');
 writeln('The size of rec_type is ', sizeof(rec_type), '.');
 writeln('The size of rec_type.ar is ', sizeof(rec.ar), '.');
 writeln('The size of subB is ', sizeof(subB), '.');
 writeln('The size of sub1 (8) is ', sizeof(sub1), '.');
 writeln('The size of sub2 (128) is ', sizeof(sub2), '.');
 writeln('The size of sub3 (256) is ', sizeof(sub3), '.');
 writeln('The size of univ_ptr is ', sizeof(u), '.')
end. { sizeof_example }

180 Pascal Language Reference

6

stlimit

The stlimit procedure terminates program execution if a specified number
of statements have been executed in the current loop.

Syntax

stlimit (x)

Arguments

x is an integer value.

Return Value

stlimit does not return any values.

The commands to compile and
execute sizeof.p . The value
sizeof returns may depend
upon the architecture of your
system.

hostname% pc sizeof.p
hostname% a.out
The size of boolean is1.
The size of char is1.
The size of color1 is1.
The size of color2 is1.
The size of file is2089.
The size of integer is 4.
The size of integer16 is 2.
The size of integer32 is 4.
The size of longreal is 8.
The size of shortreal is 4.
The size of real is 8.
The size of rec_type is 32.
The size of rec_type.ar is20.
The size of subB is1.
The size of sub1 (8) is1.
The size of sub2 (128) is1.
The size of sub3 (256) is2.
The size of univ_ptr is4.

Built-In Procedures and Functions 181

6

Comments

To use stlimit , you must include the following code in your source program:

{$p+}

When you call stlimit , it tests if x number of statements have been executed
in the current loop. If the number of statements executed equals or exceeds x,
stlimit stops the program, dumps core, and prints the following message:

Statement count limit of x exceeded
Trace/BPT trap (core dumped)

If stlimit is used without a loop, it reports the number of statements
executed and the CPU time utilized.

To check the statement limit after each statement, you can turn on runtime
checks using the –C command-line option or the C or t program text options.
When runtime checks are turned on and the compiler encounters a stlimit
statement, the compiler inserts a statement limit check after each subsequent
statement.

Example

The Pascal program,
stlimit.p

program stlimit_example;
{$p+}

{ This program demonstrates the use
 of the stlimit procedure. }

begin
 repeat
 writeln('Hello.');
 stlimit(10)
 until false
end. { stlimit_example }

182 Pascal Language Reference

6

stradd

The stradd procedure adds a string to another string.

Syntax

stradd (strdest, strsrc)

Arguments

strdest is a variable-length string.

strsrc is a variable-length string, a character array, or a character-string
constant.

Return Value

stradd does not return any values.

Comments

stradd adds strsrc to strdest, and is a more efficient operator for the
concatenation of strings. Use stradd when a string is constructed by multiple
concatenation, with other strings to its end.

stradd avoids allocating temporary storage. An example is the assignment
str1 := str1 + str2, in which the compiler copies str1 into some temporary
storage, appends str2, and copies the result back into str1.

The commands to compile and
execute stlimit.p

hostname% pc stlimit.p
hostname% a.out
Hello.
Hello.
Hello.
Hello.

Statement count limit of 11 exceeded
Trace/BPT trap (core dumped)

Built-In Procedures and Functions 183

6

If the resulting string is longer than the maximum length of strdest, it is
truncated to this maximum length.

See also the section: “concat.”

Example

substr

The substr function takes a substring from a string.

Syntax

substr (str, p, n)

Arguments

str is a variable-length string, a character array, or a character-string constant.

p is a positive integer.

n is a positive integer or zero.

The Pascal program, stradd.p program stradd_example(output);
var
 greeting: varying [20] of char := ' Hello';

begin
 stradd(greeting, ',');
 stradd(greeting, ' world');
 stradd(greeting, '!');
 writeln(greeting);
end.

The commands to compile and
execute stradd.p

hostname% pc stradd.p
hostname% a.out
 Hello, world!

184 Pascal Language Reference

6

Return Value

substr returns a variable-length string.

Comments

substr returns a substring beginning at position p and continuing for n
characters. If the values of either p or n indicate a character outside the
bounds of the string size, Pascal returns a null string.

Example

sysclock

The sysclock function returns the system time consumed by the process.

The Pascal program, substr.p program substr_example(output);

{ This program demonstrates the use of the
 substr function. }

var
 string1: array [1..15] of char;
 string2: varying [25] of char;

begin
 string1 := 'Paris, Texas';
 string2 := 'Versailles, France';
 write(substr(string1, 1, 6));
 writeln(substr(string2, 12, 7))
end. { substr_example }

The commands to compile and
execute substr.p

hostname% pc substr.p
hostname% a.out
Paris, France

Built-In Procedures and Functions 185

6

Syntax

sysclock

Arguments

sysclock does not take any arguments.

Return Value

sysclock returns an integer value.

Comments

sysclock returns the system time in milliseconds. See also the clock
function, which returns the user time the process consumes.

Example

See the example in the clock listing earlier in this chapter.

tell

The tell function returns the current position of a given file.

Syntax

tell (file)

Arguments

file is a variable with the text or file data type.

Return Value

tell returns an integer value.

186 Pascal Language Reference

6

Comments

The argument can be either a text file of text type, or a binary file of a certain
file of T type. It must be associated with an open file, otherwise an error
occurs.

For a text file, the tell function returns the byte number that corresponds to
the current position in the file.

For a binary file of type file of T , the tell function returns the number of
the element of type T that corresponds to the current position in the file.
Elements are numbered from 0.

See also the sections on: “filesize,” “seek.”

Example

The Pascal program, tell.p program tell_example;
var
 ft: text;
 fi: file of integer;
 i: integer;
begin
 rewrite(ft);
 rewrite(fi);
 for i:= 1 to 3 do begin
 writeln('tell(ft) =', tell(ft) :3);
 writeln('tell(fi) =', tell(fi) :3);
 writeln(ft, i :3);
 write(fi, i);
 end;
 close(ft);
 close(fi)
end. { tell_example }

Built-In Procedures and Functions 187

6

time

The time procedure retrieves the current time.

Syntax

time (a)

Arguments

a is a variable that can be either a character array that is 8 elements long for the
"C" locale, or a variable-length string.

Return Value

time returns a character string in the form traditional for a given locale. For
the "C" locale, the form is hh:mm:ss , where hh is the hour (0 through 23); mm
is the minutes (0 through 59); and ss is the seconds (0 through 59).

Comments

time uses a 24-hour clock. It puts a zero in front of the hours, minutes, and
seconds, so that they always consist of two digits.

Use the environment variable LC_TIME to set the necessary locale.

See also the section: “date.”

The commands to compile and
execute tell.p

hostname% pc tell.p
hostname% a.out
tell(ft) = 0
tell(fi) = 0
tell(ft) = 4
tell(fi) = 1
tell(ft) = 8
tell(fi) = 2

188 Pascal Language Reference

6

Example

The Pascal program, time.p program time_example(output);

var
 s1: alfa;
 s2: array[1..8] of char;
 s3: array[89..96] of char;
 s4: varying[100] of char;

begin
 time(s1);
 time(s2);
 time(s3);
 time(s4);
 writeln('The time is ', s1, '.');
 writeln('The time is ', s2, '.');
 writeln('The time is ', s3, '.');
 writeln('The time is ', s4, '.');
end.

Built-In Procedures and Functions 189

6

trace

The trace routine prints stack traceback without terminating a program.

Syntax

trace

Arguments

trace does not take any arguments.

Return Value

trace does not return any values.

The commands to compile and
execute time.p

hostname% pc time.p
hostname% a.out
The time is 14:02:49.
The time is 14:02:49.
The time is 14:02:49.
The time is 14:02:49.
hostname% setenv LC_TIME ru
hostname% a.out
The time is 14:02:56.
The time is 14:02:56.
The time is 14:02:56.
The time is 14:02:56.
hostname% setenv LC_TIME C
hostname% a.out
The time is 14:03:21.
The time is 14:03:21.
The time is 14:03:21.
The time is 14:03:21.

190 Pascal Language Reference

6

Comments

You can use the trace routine for debugging. This routine prints stack
traceback information to a file without terminating your program. The name
of the traceback file is p.trace , where p is the name of your executable. For
example, if the executable is called a.out , then the name of the traceback file
is a.out.trace .

The trace routine can be called several times during program execution, if
necessary. In this case, traceback information is appended to the traceback file.

The trace routine uses dbx , so be sure that dbx is in your path.

To print the traceback output in a clearer format, use the -g option to compile
your program.

Example

The Pascal program, trace.p program trace_example;

procedure subr(count: integer);
begin
 if (count > 0) then
 subr(count - 1)
 else
 trace;
end;

begin
 subr(5);
end.

Built-In Procedures and Functions 191

6

trim

The trim function removes the trailing blanks in a character string.

Syntax

trim (input_string)

Arguments

input_string is a constant string, a variable-length string, a character array, or a
character.

Return Value

trim returns a variable-length string equal to the input string without any
trailing blanks. If input_string is a null string or contains only blanks, trim
returns a null string of length 0.

Comments

trim has no effect if its result value is assigned to a fixed-length character
string variable. Fixed-length characters are always padded with blanks during
assignments.

The commands to compile and
execute trace.p

hostname% pc trace.p -g
hostname% a.out
hostname% cat a.out.trace

Stacktrace of a.out
 [4] subr(count = 0), line 8 in "trace.p"
 [5] subr(count = 1), line 6 in "trace.p"
 [6] subr(count = 2), line 6 in "trace.p"
 [7] subr(count = 3), line 6 in "trace.p"
 [8] subr(count = 4), line 6 in "trace.p"
 [9] subr(count = 5), line 6 in "trace.p"
 [10] program(), line 12 in "trace.p"
detaching from process 28226

192 Pascal Language Reference

6

Example

The Pascal program, trim.p program trim_example;

{ This program demonstrates the use of the trim function. }
const
 TEN = ' ';
 MAX = 10;
type
 large = varying [100] of char;
 s_type = array [1..MAX] of char;
 v_type = varying [MAX] of char;
var
 c1: char := ' ';
 st1: s_type := '123456 ';
 st2: s_type := ' ';
 st3: s_type := '0123456789';
 v1: v_type := '01234 ';
 v2: v_type := ' ';
 v3: v_type := '0123456789';
 l: large;

begin
 l := trim(st1) + trim(st2) + trim(st3) + trim(c1);
 writeln(l, length(l));
 l := substr(trim(st1) + trim(st2) + trim(st3), 3, 5);
 writeln(l, length(l));
 l := trim(v1) + trim(TEN) + trim(v2) + trim(v3) + trim(st1)
 + trim(st2) + trim(st3);
 writeln(l, length(l))
end. { trim_example }

The commands to compile and
execute trim.p

hostname% pc trim.p
hostname% a.out
1234560123456789 16
34560 5
0123401234567891234560123456789 31

Built-In Procedures and Functions 193

6

Type Transfer

The type transfer function changes the data type of a variable, constant, or
expression.

Syntax

transfer_function(x)

Arguments

transfer_function is a predeclared or user-defined Pascal data type.

x is a variable, constant, or expression.

Return Value

A type transfer function returns its argument unchanged in internal value, but
with a different apparent type.

Comments

Suppose your program contains the following data type declarations:

To transfer the value of variable x to a floating-point number, you would write:

var
 x: integer32;
 y: single;

y := single(x);

194 Pascal Language Reference

6

When the argument of a type transfer function is a variable, the size of the
argument must be the same as the size of the destination type. However, if the
argument to a transfer function is a constant or an expression, Pascal attempts
to convert the argument to the destination type because constants and
expressions do not have explicit types.

The type transfer functions copy, but do not convert, a value. Do not confuse
the type transfer functions with functions that actually convert the value of the
variable, such as ord , chr , and trunc .

Example

The Pascal program, type.p program type_transfer_example(output);

{ This program uses transfer functions to
 convert integer to character. }

type
 range = 65..90;

var
 i: range;
 c: char;

begin
 for i := firstof(i) to lastof(i) do begin
 write('The character value of ', i: 1);
 writeln(' is ', char(i), '.')
 end
end. { type_transfer_example }

Built-In Procedures and Functions 195

6

wallclock

The wallclock function returns the elapsed number of seconds since
00:00:00 GMT January 1, 1970.

Syntax

wallclock

The commands to compile and
execute type.p

hostname% pc type.p
hostname% a.out
The character value of 65 is A.
The character value of 66 is B.
The character value of 67 is C.
The character value of 68 is D.
The character value of 69 is E.
The character value of 70 is F.
The character value of 71 is G.
The character value of 72 is H.
The character value of 73 is I.
The character value of 74 is J.
The character value of 75 is K.
The character value of 76 is L.
The character value of 77 is M.
The character value of 78 is N.
The character value of 79 is O.
The character value of 80 is P.
The character value of 81 is Q.
The character value of 82 is R.
The character value of 83 is S.
The character value of 84 is T.
The character value of 85 is U.
The character value of 86 is V.
The character value of 87 is W.
The character value of 88 is X.
The character value of 89 is Y.
The character value of 90 is Z.

196 Pascal Language Reference

6

Arguments

wallclock does not take any arguments.

Return Value

wallclock returns an integer value.

Comments

wallclock can be used with the seed function to generate a random number.
It can also be used to time programs or parts of programs.

Example

See the example that follows.

Built-In Procedures and Functions 197

6

The Pascal program,
wallclock.p

program wallclock_example(output);

{ This program demonstrates the use of the
 wallclock function. }

const
 NTIMES = 20; { Number of times to compute Fib value. }
 NUMBER = 24; { Biggest one we can compute with 16 bits. }

var
 start: integer;
 finish: integer;
 i: integer;
 value: integer;

{ Compute fibonacci number recursively. }
function fib(number: integer): integer;

begin
 if number > 2 then
 fib := fib(number - 1) + fib(number - 2)
 else
 fib := 1
end; { fib }

begin { main program }
 writeln('Begin computing fibonacci series.');
 write(NTIMES, ' Iterations: ');
 start := wallclock;
 for i := 1 to NTIMES do
 value := fib(NUMBER);
 finish := wallclock;
 writeln('Fibonacci(', NUMBER: 2, ') = ', value: 4, '.');
 writeln('Elapsed time is ', finish - start: 3, ' seconds.')
end. { wallclock_example }

The commands to compile and
execute wallclock.p

hostname% pc wallclock.p
hostname% a.out
Begin computing fibonacci series.
 20 Iterations: Fibonacci(24) = 46368.
Elapsed time is 5 seconds.

198 Pascal Language Reference

6

write and writeln

Pascal supports the standard form of write and writeln with the following
extensions:

• Output enumerated type values to a text file.
• Write the internal representation of an expression in octal or hexadecimal.
• Specify a negative field width.

Syntax

write (file, exp1:width ..., expN:width)

writeln (file, exp1:width ..., expN:width)

Arguments

file is a variable having either the text or file data type. file is optional; it
defaults to output .

exp is a variable, constant, or expression of type integer, real , character,
boolean , enumerated, or string. exp cannot be a set variable.

width is an integer. width is optional.

Return Value

write and writeln do not return any values.

Comments

If exp is an enumerated type, write and writeln attempt to write a value
that is included in the type definition. If the value is not in the type definition,
the compiler terminates program execution and prints an error message.

To write the internal representation of an expression in octal, use this form:

write(x oct);

x is a boolean, character, integer, pointer, or user-defined type. It can also be a
constant, expression, or variable.

Built-In Procedures and Functions 199

6

To write an expression in hexadecimal, use this form:

write(x hex);

When you specify a negative field width of a parameter, Pascal truncates all
trailing blanks in the array. write and writeln assume the default values in
Table 6-15 if you do not specify a minimum field length.

Table 6-15 Default Field Widths

Data Type Default Width without -xl Option Default Width with -xl Option

array of char Declared length of the array Declared length of the array

boolean Length of true or false 15

char 1 1

double 21 21

enumerated Length of type 15

hexadecimal 10 10

integer 10 10

integer16 10 10

integer32 10 10

longreal 21 21

octal 10 10

real 21 13

shortreal 13 13

single 13 13

string constant Number of characters in string Number of characters in string

variable-length string Current length of the string Current length of the string

200 Pascal Language Reference

6

Example

xor

The xor function returns the exclusive or of two integer values.

Syntax

xor (int1, int2)

Arguments

int1 and int2 are integer expressions.

The Pascal program, octal.p program octal_example(output);

{ This program writes a number in octal
 and hexadecimal format. }

var
 x: integer16;

begin
 write('Enter an integer: ');
 readln(x);
 writeln(x: 5, ' is ', x oct, ' in octal.');
 writeln(x: 5, ' is ', x hex, ' in hexadecimal.')
end. { octal_example }

The commands to compile and
execute octal.p

hostname% pc octal.p
hostname% a.out
Enter an integer: 10
 10 is 12 in octal.
 10 is A in hexadecimal.

Built-In Procedures and Functions 201

6

Return Value

xor returns an integer value.

Comments

Pascal uses Table 6-16 to return the bitwise exclusive or of int1 and int2.

If int1 and int2 are different size integers, Pascal converts the smaller integer to
the larger integer before it performs the xor operation.

xor is a bitwise operator similar to &, ! , and ~. Do not confuse it with the
boolean operators, and , or , and not .

Example

See the example in the land listing on page 142.

Table 6-16 xor Truth

Value of Bit in int1 Value of Bit in int2 Value of Bit in result

0 0 0

0 1 1

1 0 1

1 1 1

202 Pascal Language Reference

6

203

Input and Output 7

This chapter describes the Pascal input and output environments, with
emphasis on interactive programming. It contains the following sections:

Input and Output Routines
Pascal supports all standard input and output routines, plus the extensions
listed in Table 7-1. For a complete description of the routines, refer to
Chapter 6, “Built-In Procedures and Functions.”

Input and Output Routines page 203

eof and eoln Functions page 204

More About eoln page 208

External Files and Pascal File Variables page 210

input, output, and errout Variables page 211

Pascal I/O Library page 213

Buffering of File Output page 213

I/O Error Recovery page 214

204 Pascal Language Reference

7

Table 7-1 Extensions to Input/Output Routines

eof and eoln Functions
A common problem encountered by new users of Pascal, especially in the
interactive environment of the operating system, relates to eof and eoln .
These functions are supposed to be defined at the beginning of execution of a
Pascal program, indicating whether the input device is at the end of a line
(eoln) or the end of a file (eof).

Routine Description

append Opens a file for writing at its end.

close Closes a file.

filesize Returns the current size of a file.

flush Writes the output buffer for the specified Pascal file into the
associated operating system file.

getfile Returns a pointer to the C standard I/O descriptor
associated with the specified Pascal file.

linelimit Terminates program execution after a specified number of
lines has been written into a text file.

message Writes the specified information to stderr .

open Associates an external file with a file variable.

read and readln Read in boolean , integer and floating-point variables,
fixed- and variable-length strings, enumerated types, and
pointers.

remove Removes the specified file.

reset and rewrite Accepts an optional second argument.

seek Resets the current position of a file for random access I/O.

tell Returns the current position of a file.

write and writeln Outputs boolean integer and floating-point variables,
fixed- and variable-length strings, enumerated types, and
pointers; output expressions in octal or hexadecimal; allows
negative field widths.

Input and Output 205

7

Setting eof or eoln actually corresponds to an implicit read in which the
input is inspected, but not “used up.” In fact, the system cannot detect
whether the input is at the end of a file or the end of a line unless it attempts to
read a line from it.

If the input is from a previously created file, then this reading can take place
without runtime action by you. However, if the input is from a terminal, then
the input is what you type. If the system does an initial read automatically at
the beginning of program execution, and if the input is a terminal, you must
type some input before execution can begin. This makes it impossible for the
program to begin by prompting for input.

Pascal has been designed so that an initial read is not necessary. At any given
time, Pascal may or may not know whether the end-of-file and end-of-line
conditions are true .

Thus, internally, these functions can have three values: true , false , and,
“I don't know yet; if you ask me I'll have to find out.” All files remain in this
last, indeterminate state until the program requires a value for eof or eoln ,
either explicitly or implicitly; for example, in a call to read . If you force Pascal
to determine whether the input is at the end of the file or the end of the line, it
must attempt to read from the input.

Consider the following example:

206 Pascal Language Reference

7

At first glance, this may appear to be a correct program for requesting, reading,
and echoing numbers. However, the while loop asks whether eof is true
before the request is printed. Thus, this system is forced to decide whether the
input is at the end of the file. It gives no messages; it simply waits for the user
to type a line, as follows:

The following code avoids this problem by prompting before testing eof :

The Pascal program,
eof_example1.p , which shows
the improper use of the eof
function

program eof_example1;

var
 i: integer;

begin
 while not eof do begin
 write('Number, please? ');
 read(i);
 writeln('That was a ', i: 2, '.');
 writeln
 end
end. { eof_example1 }

The commands to compile and
execute eof_example1.p

hostname% pc eof_example1.p
hostname% a.out
23
Number, please? That was a 23.

Number, please? ^D
standard input: Tried to read past end of file
a.out terminated by signal 5: SIGTRAP
Traceback being written to a.out.trace
Abort (core dumped)

Input and Output 207

7

You must still type a line before the while test is completed, but the prompt
asks for it. This example, however, is still not correct, because it is first
necessary to know that there is an end-of-line character at the end of each line
in a Pascal text file. Each time you test for the end of the file, eof finds the
end-of-line character. Then, when read attempts to read a character, it skips
past the end-of-line character, and finds the end of the file, which is illegal.

Thus, the modified code still results in the following error message at the end
of a session:

The simplest way to correct the problem in this example is to use the procedure
readln instead of read . readln also reads the end-of-line character, and
eof finds the end of the file:

The Pascal program,
eof_example2.p , which also
shows the improper use of the
eof function.

program eof_example2;

var
 i: integer;

begin
 write('Number, please? ');
 while not eof do begin
 read(i);
 writeln('That was a ', i: 2, '.');
 writeln;
 write('Number, please? ')
 end
end. { eof_example2 }

The commands to compile and
execute eof_example2.p

hostname% pc eof_example2.p
hostname% a.out
Number, please? 23
That was a 23.

Number, please? ^D
standard input: Tried to read past end of file
Traceback being written to a.out.trace
Abort (core dumped)

208 Pascal Language Reference

7

In general, unless you test the end-of-file condition both before and after calls
to read or readln , there may be input that causes your program to attempt to
read past the end-of-file.

More About eoln

To have a good understanding of when eoln is true , remember that in any
file text, there is a special character indicating end-of-line. In effect, Pascal
always reads one character ahead of the read command.

For instance, in response to read(ch) , Pascal sets ch to the current input
character and gets the next input character. If the current input character is the
last character of the line, then the next input character from the file is the
newline character, the normal operating system line separator.

The Pascal program,
eof_example3.p , which shows
the proper use of the eof
function.

program eof_example3;

var
 i: integer;

begin
 write('Number, please? ');
 while not eof do begin
 readln(i);
 writeln('That was a ', i: 2, '.');
 writeln;
 write('Number, please? ')
 end
end. { eof_example3 }

The commands to compile and
execute eof_example3.p

hostname% pc eof_example3.p
hostname% a.out
Number, please? 23
That was a 23.

Number, please? ^D

Input and Output 209

7

When the read routine gets the newline character, it replaces that character by
a blank (causing every line to end with a blank) and sets eoln to true . eoln
is true as soon as you read the last character of the line and before you read
the blank character corresponding to the end of line. Thus, it is almost always
a mistake to write a program that deals with input in the following way:

This program almost always has the effect of ignoring the last character in the
line. The read(ch) belongs as part of the normal processing. In Pascal terms,
read(ch) corresponds to ch := input^; get(input) .

Given this framework, the function of a readln call is defined as follows:

This code advances the file until the blank corresponding to the end of line is
the current input symbol and then discards this blank. The next character
available from read is the first character of the next line, if one exists.

This code shows the improper
use of the eoln function.

read(ch);
if eoln then

Done with line
 else

Normal processing

This code shows the proper
use of eoln .

read(ch);
if eoln then

Done with line
else begin

read(ch);
Normal processing
end

while not eoln do
get(input);

get(input);

210 Pascal Language Reference

7

External Files and Pascal File Variables
In Pascal, most input and output routines have an argument that is a file
variable. This system associates these variables with either a permanent or
temporary file at compile-time.

Permanent Files

Table 7-2 shows how to associate a Pascal file variable with a permanent file.

Table 7-2 Pascal File Variable with a Permanent File

Association Description

With the open function open associates a permanent file with a file
variable for reading or writing. open can also
determine if a file actually exists.

With the reset and rewrite
functions

In Pascal, reset and rewrite take an optional
second argument, a file name. If you specify the
file name, the compiler opens the file and associates
it with the given file variable. Any previous file
associated with the file variable is lost.

With the program header If you call reset or rewrite with a file variable
f1, which is bound to a file variable declared f2 in
the program header and do not specify the file
name, Pascal opens a file with the same name as
the variable f2. reset gives a runtime error if the
file does not exist. rewrite creates the file if it
does not exist.

Input and Output 211

7

Temporary Files

Table 7-3 shows how to associate a Pascal file variable with a temporary file.

Table 7-3 Pascal File Variable with a Temporary File

input , output , and errout Variables
The input , output , and errout variables are special predefined file
variables.

• input is equivalent to the operating system standard input file, stdin .
• output is equivalent to the operating system standard output file, stdout .
• errout is equivalent to the operating system standard error file, stderr .

Properties of input , output , and errout Variables

The input, output, and errout variables are of the type text and have
the following special properties:

• input , output , and errout are optional in the program header.

• You can redirect input , output , and errout to files or pipe them to other
programs.

• You can redefine input , output , and errout .

• You do not have to name input and output as explicit arguments to the
read , readln , write , and writeln procedures.

Association Description

With the procedure:
rewrite(file_variable)

file_variable must not be declared in the program
statement. This procedure creates a temporary file
called #tmp. suffix, where suffix is unique to that
temporary file. When the program exits or leaves the
scope in which file_variable is declared, the file is
deleted.

With the procedure:
rewrite(output)

The procedure creates the temporary file called
#tmp .suffix, where suffix is unique to that temporary file.
This file is not deleted after program execution.

212 Pascal Language Reference

7

• In the initial state of input, eoln is true and eof is false . input ↑ is
not initially defined when it is associated with stdin until the first read or
readln . For output , eoln is initially undefined, and eof is true .

Associating input with a File Other Than stdin

To associate input with a file other than stdin, call reset(input , filename).
Pascal opens filename and associates it with input . read and readln read
from that file. For example, this line opens the file, some/existing/file,
and associates it with input :

reset(input,'some/existing/file');

You must supply a file name for the association to work.

Associating output with a File Other Than stdout

To associate output with a file other than stdout , call rewrite(output,
filename). Pascal opens filename and associates it with output . For example,
this line associates /home/willow/test with output :

rewrite(output, '/home/willow/test');

Now, whenever you direct write or writeln to output , the output is sent to
/home/willow/test . This includes the default case, when you write
without giving a file variable.

If you call rewrite on output and you haven't associated output with an
external file, the program creates a file with a name of the form #tmp. suffix,
where suffix is unique to that file. Pascal does not delete this file after the
program exits.

Associating errout with a File Other Than stderr

To associate errout with a file other than stderr , call:

rewrite (errout, '/some/new/file');

Subsequently, whenever you direct write or writeln to errout , the output
is sent to /some/new/file . You obtain the same results when you write a
string to errout implicitly, using the message function. See “message” on
page 155 for details.

Input and Output 213

7

Pascal I/O Library
Each file variable in Pascal is associated with a data structure. The data
structure defines the physical Solaris 2.x operating system file with which the
variable is associated. It also contains flags that indicate whether the file
variable is in an eoln or eof state.

The data structure also includes the buffer. The buffer normally contains a
single component that is the same type as the type of the file. For example, a
file of char has one character buffer, and a file of integer has one
integer buffer.

Buffering of File Output
It is extremely inefficient for Pascal to send each character to a terminal as it
generates it for output. It is even less efficient if the output is the input of
another program, such as the line printer daemon, lpr (1).

To gain efficiency, Pascal buffers output characters; it saves the characters in
memory until the buffer is full and then outputs the entire buffer in one system
interaction.

For interactive prompting to work, Pascal must print the prompt before
waiting for the response. For this reason, Pascal normally prints all the output
that has been generated for output whenever one of the following conditions
occurs:

• The program calls a writeln .
• The program reads from the terminal.
• The program calls either the message or flush procedure.

In the following code sequence, the output integer does not print until the
writeln occurs:

214 Pascal Language Reference

7

Pascal performs line buffering by default. To change the default, you can
compile your program with –b option. When you specify the –b option on the
command-line, the compiler turns on block-buffering with a block size of 1,024.
You can specify this option in a program comment using one of these formats:

This option only has an effect in the main program. The value of the option in
effect at the end statement of the main program is used for the entire program.

I/O Error Recovery
When an I/O routine encounters an error, it normally does the following:

1. Generates an error message.

2. Flushes its buffers.

3. Terminates with a SIGTRAP.

Although you can set up a signal handler to trap this signal, you cannot
determine which routine called the signal or the reason it was called.

With Pascal, you can set I/O trap handlers dynamically in your program. The
handler is a user-defined Pascal function.

When an I/O error occurs, Pascal runtime library checks if there is a current
active I/O handler. If one does not exist, Pascal prints an error message,
invokes a SIGTRAP signal, and terminates.

for i := 1 to 5 do begin
write(i);
Compute a lot with no output

end;
writeln;

{$b0} No buffering.

{$b1} Line buffering. This is the default.

{$b2} Block buffering. The block size is 1,024. Any number greater
than 2, for example, {$b5} , is treated as {$b2} .

Input and Output 215

7

If a handler is present, the handler is passed the values err_code and filep
as in parameters. The parameter err_code is bound to the error value that
caused the I/O routine to fail. The parameter filep is bound to the I/O
descriptor that getfile returned for the file in which the error occurred. If
filep equals nil , no file was associated with the file variable when the error
occurred.

The handler returns a boolean value. If the value is false , the program
terminates. If the value is true , program execution continues with the
statement immediately following the I/O routine that called the trap. The
results of the I/O call remain undefined.

You can set the handler to nil to return it to its default state.

The scope of the active handler is determined dynamically. Pascal has
restrictions as to the lexical scoping when you declare the handler. The
compiler assumes that the handler is a function declared at the outermost level.
Providing a nested function as the handler may cause unexpected results. The
compiler issues a warning if it attempts to take the address of a nested
procedure.

To set an I/O trap handler, you must include the file ioerr.h in your Pascal
source file. ioerr.h consists of an enumeration type of all possible I/O error
values, a type declaration of an io_handler procedure pointer type, and an
external declaration of the set_io_handler routine.

This file resides in the following directory:

If the compiler is installed in a non-default location, change /opt/SUNWspro
to the location where the compiler is installed.

/opt/SUNWspro/SC4.2/include/pascal

216 Pascal Language Reference

7

The include file, ioerr.h /* Copyright 1989 Sun Microsystems, Inc. */

type
 IOerror_codes = (
 IOerr_no_error,
 IOerr_eoln_undefined,
 IOerr_read_open_for_writing,
 IOerr_write_open_for_reading,
 IOerr_bad_data_enum_read,
 IOerr_bad_data_integer_read,
 IOerr_bad_data_real_read,
 IOerr_bad_data_string_read,
 IOerr_bad_data_varying_read,
 IOerr_close_file,
 IOerr_close_null_file,
 IOerr_open_null_file,
 IOerr_create_file,
 IOerr_open_file,
 IOerr_remove_file,
 IOerr_reset_file,
 IOerr_seek_file,
 IOerr_write_file,
 IOerr_file_name_too_long,
 IOerr_file_table_overflow,
 IOerr_line_limit_exceeded,
 IOerr_overflow_integer_read,
 IOerr_inactive_file,
 IOerr_read_past_eof,
 IOerr_non_positive_format
);

io_handler = ^function(in err_code : IOerror_codes;
 in fileptr : univ_ptr) :
 boolean;

procedure set_ioerr_handler(handler : io_handler); extern c;

Input and Output 217

7

The following program illustrates how to set an I/O trap routine.

The Pascal program ioerr.p ,
which defines the I/O trap
routine, test_handler . This
routine is called each time a
runtime error occurs during an
I/O operation. The #include
statement includes ioerr.h in
the program.

{$w-}
program ioerr_example(output);
{ This program sets and uses an I/O trap routine. }

#include "ioerr.h"
const
 NAME = 'rmc.dat';

var
 f: text;
 IO_ERROR: IOerror_codes;
 str: array [1..10] of char := 'Testing';

function test_handler(in code: IOerror_codes;
 in fileptr: univ_ptr): boolean;

begin
 if code = IO_ERROR then begin
 writeln('ERROR HANDLER ', code);
 test_handler := true
 end else
 test_handler := false
end; { test_handler }

begin { main program }
 set_ioerr_handler(addr(test_handler));
 { Write to an unopened file. }
 IO_ERROR := IOerr_inactive_file;
 write(f, 'This file is not open.');
 { Read a file open for writing. }
 rewrite(f, NAME);
 IO_ERROR := IOerr_read_open_for_writing;
 readln(f, str);
 remove(NAME);
 { Remove a nonexistent file. }
 IO_ERROR := IOerr_remove_file;
 remove('nonexistent.dat')
end. { ioerr_example }

218 Pascal Language Reference

7

The commands to compile and
execute ioerr.p . When you use
an I/O error recovery routine, you
should compile your program with
the –C option.

hostname% pc -C ioerr.p
hostname% a.out
ERROR HANDLER IOerr_inactive_file
ERROR HANDLER IOerr_read_open_for_writing
ERROR HANDLER IOerr_remove_file

219

Overview of Pascal Extensions A

This Appendix gives an overview of the Pascal extensions to ISO/ANSI
standard Pascal.

Lexical Elements
Pascal supports the following extensions to the lexical elements of standard
Pascal:

• Uppercase- and lowercase-sensitive

• The special symbols ~, &, | , ! , #, and %

• The reserved words external , otherwise , private , public , and univ

• The reserved words define , extern , module , and static

• The identifiers in Table A-1

• An underscore (_) and dollar_sign($) in identifier names

• The comment delimiters /* */ . in addition to the standard (* *) and { }

• The comment delimiters " "

220 Pascal Language Reference

A

Table A-1 Nonstandard Identifiers

Data Types
Pascal supports the following extensions to the standard Pascal data types:

• The real data types shortreal and longreal

• The real data types single and double

• A real constant without a digit after the decimal point

• The integer data types integer16 and integer32

• An integer constant in another base

• Character constants minchar , maxchar , bell , and tab

• Fixed-length and variable-length character strings

• Array initialization using a default upper bound or a repeat count

• A set of type intset , which contains the elements 0 through 127

Nonstandard Identifiers

FALSE close index lsr return

TRUE concat integer16 max rshft

addr date integer32 maxchar seed

alfa discard intset message seek

append double land min shortreal

argc exit lastof minchar single

argv expo length minint sizeof

arshft filesize linelimit next stradd

asl firstof lnot null substr

asr flush longreal open tell

assert getfile lor pack trace

bell getenv lshft random trim

card halt lsl remove univ_ptr

clock in_range

Overview of Pascal Extensions 221

A

• A pointer type to procedures and functions

• A universal pointer type that holds a pointer to a variable of any data type

Statements
Pascal extends the standard definition of statements, as follows:

• The and then and or else operators in the if statement

• The assert statement

• The otherwise statement in a case statement

• Constant ranges in a case statement

• The exit statement in a for , while , or repeat loop

• The next statement in a for , while , or repeat loop

• An identifier as the target of a goto statement

• The return statement in a procedure or function

• An alternative format of the with statement

Assignments and Operators
Pascal supports the following extensions to standard Pascal operators:

• The bitwise operators ~(not), &(and), | (or), and ! (or)

• The boolean operators and then and or else

• The relational operators on sets

• The equality (=) and inequality <>) (operators on records and arrays

• The concatenation operator, the plus sign (+), on any combination of fixed-
and variable-length strings

Headings and Declarations
Pascal supplies the following extensions to the standard program heading and
declarations:

• Identifiers as labels

222 Pascal Language Reference

A

• A constant equal to a set expression

• public and private variable declarations

• The static , extern , and define variable attributes

• real , integer, boolean , character, set, record, array, and pointer variable
initialization in the var declaration

• The define declaration

• The label , const , type , var , and define declaration in any order and
any number of times

Procedures and Functions
Pascal supports the following extensions to the standard Pascal definition of
procedures and functions:

• public and private procedure and function declarations

• The in , in out, and out parameter types

• The univ keyword parameter type

• The extern , external , internal , variable , and nonpascal routine
options

• Functions returning structured types

Built-In Routines
Pascal supports the following nonstandard built-in routines:

• The addr function, which returns the address of a specified variable

• The append procedure, which opens a file for writing at its end

• The argc function, which returns the number of arguments passed to the
program

• The argv procedure, which assigns the specified program argument to a
string variable

• The arshft function, which does an arithmetic right shift of an integer

• The asl function, which does an arithmetic left shift of an integer

Overview of Pascal Extensions 223

A

• The asr function, which is identical to arshft

• The concat function, which concatenates two strings

• The card function, which returns the cardinality of a set

• The clock function, which returns the user time used by the process

• The close procedure, which closes the specified file

• The date procedure, which fetches the current date

• The discard procedure, which explicitly discards the return value of a
function

• The expo function, which calculates the exponent of a specified variable

• The filesize function, which returns the current size of a file

• The firstof function, which returns the first possible value of a type or
variable

• The flush procedure, which writes the output buffered for the specified
Pascal file into the associated operating system file

• The getenv function, which returns the value associated with an
environment name

• The getfile function, which returns a pointer to the C standard I/O
descriptor associated with the specified Pascal file

• The halt procedure, which terminates program execution

• The index function, which returns the position of the first occurrence of a
string or character within another string

• The in_range function, which determines whether a specified value is in
the defined integer subrange

• The land function, which returns the bitwise and of two integer values

• The lastof function, which returns the last possible value of a type or
variable

• The length function, which returns the length of a string

• The linelimit function, which terminates execution of a program after a
specified number of lines have been written into a text file

• The lnot function, which returns the bitwise not of an integer value

224 Pascal Language Reference

A

• The lor function, which returns the inclusive or of two integer values

• The lshft function, which does a logical left shift of an integer

• The lsl function, which is identical to lshft

• The lsr function, which is identical to rshft

• The max function, which returns the larger of two expressions

• The message procedure, which writes the specified information to stderr

• The min function, which returns the smaller of two expressions

• The null procedure, which performs no operation

• The open procedure, which associates an external file with a file variable

• The random function, which generates a random number between 0.0 and
1.0

• The read and readln procedures, which read in boolean variables, fixed-
and variable-length strings, enumerated types, and pointers from the
standard input

• The remove procedure, which removes the specified file

• The reset and rewrite procedures, which accept an optional second
argument, a Solaris 2.0 operating system file name

• The rshft function, which does a logical right shift of an integer

• The seed function, which reseeds the random number generator

• The seek procedure, which resets the current position of a file

• The sizeof function, which returns the size of a specified type, variable,
constant, or string

• The stlimit procedure, which terminates program execution if a specified
number of statements have been executed in the current loop

• The stradd procedure, which adds a string to the end of another string

• The substr function, which extracts a substring from a string

• The sysclock function, which returns the system time used by the process

• The tell function, which returns the current position of a file

• The time procedure, which retrieves the current time

Overview of Pascal Extensions 225

A

• The trace procedure, which prints stack traceback

• The trim function, which removes the trailing blanks in a character string

• The type_transfer function, which changes the data type of a variable or
expression

• The wallclock function, which returns the elapsed number of seconds
since 00:00:00 GMT January 1, 1970

• The write and writeln procedures, which output enumerated type values
to the standard output and allow output expressions in octal or hexadecimal

• The write and writeln procedures, which allow negative field widths

• The xor function, which returns the exclusive or of two integer values

Input and Output
Pascal supports the following extensions to standard Pascal input and output:

• Association of a Pascal file with either a permanent or temporary Solaris
operating system file

• The special predefined file variables, input and output , that need not be
specified in the program statement

• The special predefined file variable, errout

• An I/O error recovery mechanism

Program Compilation
Pascal supports the following extensions to program compilation:

• Sharing variable, procedure, and function declarations across multiple units
using include files

• Sharing variable, procedure, and function declarations across multiple units
using multiple declarations

• Sharing variable, procedure, and function declarations across multiple units
using the extern and define variable declarations

• Sharing variable, procedure, and function declarations between units of
different languages using the extern and external routine options

226 Pascal Language Reference

A

227

Pascal andDOMAIN Pascal B

This Appendix describes the differences between Pascal and Apollo DOMAIN
Pascal, and how the -xl option can be used to get around most of these
differences.

The –xl Option
The –xl option to the pc command makes the language accepted by the
Pascal compiler similar to DOMAIN Pascal. Table B-1 lists the differences in
your program when you compile it with and without the –xl option.

Table B-1 Differences Between Programs Compiled with and without –xl

With –xl Without –xl

The default integer size is 16 bits. The default is 32 bits.

The default real size is 32 bits. The default is 64 bits.

The default enumerated type size is 16 bits. The default is either 8 or 16 bits, depending on the number
of elements in the enumerated set.

The source file is run through the preprocessor cppas
before it is processed by the compiler.

The source file is run through the preprocessor cpp .

Pascal supports nonpasca l as a routine option. nonpascal is not supported.

228 Pascal Language Reference

B

DOMAIN Pascal Features Accepted but Ignored
Pascal accepts these DOMAIN Pascal features, but otherwise ignores them,
with a warning message as appropriate:

• The volatile , device , and address extensions for attributes of variables
and types

• Routine attribute lists

• The routine options abnormal , nosave , noreturn , val_param , and
d0_return , a0_return, and c_param

The –L option, which maps all identifiers to lowercase, is
on by default.

–L is off by default.

If the value of the expression in a case statement does
not match any of the case values, the program falls
through and does not generate an error. The program
continues execution in the statement immediately
following the case statement.

The compiler generates an error and halts.

The writing of enumerated and boolean variables
defaults to uppercase and 15-character width format.

Enumerated variables default to the length of the type.
boolean variables default to the length of true or false .

Integer or real constant literals that overflow
implementation limits do not cause an error. The
resulting action is undefined.

An error is generated.

No warning is generated when the argument to the addr
function is a local or private variable.

A warning is generated.

Top-level variables, procedures, and functions in
programs default to private .

Variables, procedures, and functions in programs default to
public .

Top-level variables in modules default to private . Variables in modules default to public .

Modules compiled with –xl are not compatible with
modules compiled without –xl .

These two types of modules are not linked together.

Table B-1 Differences Between Programs Compiled with and without –xl (Continued)

With –xl Without –xl

Pascal and DOMAIN Pascal 229

B

DOMAIN Pascal Features Not Supported
Pascal does not support the following features of DOMAIN Pascal:

• Alignment specific to the DN10000 in DOMAIN Pascal SR10

• Allocation of variables into named sections

• Calls to the DOMAIN system libraries

• Compiler directives inside comments

• The functions append , ctop , find , ptoc , replace , and undefined

• Special characters embedded in string literals

• The system programming routines, disable , enable , and set_sr

230 Pascal Language Reference

B

231

Implementation Restrictions C

This Appendix describes the Pascal features that are implementation-defined.

Identifiers
Pascal restricts the maximum length of an identifier to 1,024 characters. All
characters are significant.

Identifiers in a nested procedure are concatenated with the identifier of the
containing procedure. Thus, an identifier in a deeply nested procedure may
become several hundred characters when concatenated and may cause
problems with the compiler. Pascal generates an error when this situation
occurs.

Data Types
This section describes the restrictions Pascal places on the following data types:

• real
• Integer
• Character
• Record
• Array
• Set
• Alignment

232 Pascal Language Reference

C

real

Table C-1 lists the minimum and maximum values Pascal assigns to the real
data types, single and double .

Table C-1 Values for single and double

Integer

The value Pascal assigns to the integer constants maxint and minint depends
on whether or not you compile your program with the –xl option, as shown in
Table C-2.

Table C-2 maxint and minint

Character

Pascal defines the maximum range of characters as 0 to 255.

Record

Pascal restricts the maximum size of a record to 2,147,483,647 bytes.

Array

Pascal restricts the maximum size of an array to 2,147,483,647 bytes.

Type Bits Maximum Value Minimum Value

single 32 3.402823e+38 1.401298e-45

double 64 1.79769313486231470e+308 4.94065645841246544e-324

Option maxint minint

-xl off 2,147,483,647 -2,147,483,648

-xl on 32,767 -32,768

Implementation Restrictions 233

C

Set

Pascal restricts the maximum size of a set to 32,767 elements.

Alignment

The size and alignment of data types depends on whether or not you compile
your program with the –xl option. Table C-3 shows the representation of data
types without –xl , and Table C-4 shows the representation with –xl .

234 Pascal Language Reference

C

Table C-3 Internal Representation of Data Types without –xl

Data Type Size Alignment

integer Four bytes Four bytes

integer16 Two bytes Two bytes

integer32 Four bytes Four bytes

real Eight bytes Eight bytes

single Four bytes Four bytes

shortreal Four bytes Four bytes

double Eight bytes Eight bytes

longreal Eight bytes Eight bytes

boolean One byte One byte

char One byte One byte

enumerated One or two bytes, depending on the
number of elements in the enumerated set

One or two bytes

subrange One, two, or four bytes One, two, or four bytes

record Depends upon the base type of that field. Four bytes

array Requires the same space required by the
base type of the array.

Same as element type

set Pascal implements vector, with one bit
representing each element of a set. The
size is determined by the size of the ordinal
value of the maximal element of the set
plus one. It is a minimum of two bytes and
always in two-byte multiples.

Two bytes if size = 2;
otherwise, four bytes

pointer Four bytes Four bytes

Implementation Restrictions 235

C

Table C-4 Internal Representation of Data Types with -xl

Nested Routines
Pascal allows a maximum of 20 levels of procedure and function nesting.

Data Type Size Alignment

integer Two bytes Four bytes

integer16 Two bytes Two bytes

integer32 Four bytes Four bytes

real Four bytes Eight bytes

single Four bytes Four bytes

shortreal Four bytes Four bytes

double Eight bytes Eight bytes

longreal Eight bytes Eight bytes

boolean One byte One byte

char One byte One byte

enumerated Two bytes Two bytes

subrange Two or four bytes Two or four bytes

record Depends on the base type of that field. Four bytes

array Needs the same space required by the base
type of the array.

Same as element type

set Pascal implements sets as a bit vector, with
one bit representing each element of a set.
The size is determined by the size of the
ordinal value of maximal element of the set
plus one. It is a minimum of two bytes and
always in two-byte multiples.

Two bytes if size = 2;
otherwise, four bytes

pointer Four bytes Four bytes

236 Pascal Language Reference

C

Default Field Widths
The write and writeln statements assume the default values in Table C-5 if
you do not specify the minimum field length of a parameter.

Table C-5 Default Field Widths

Data Type Default Width without -xl Option Default Width with -xl Option

array of char Declared length of the array Declared length of the array

boolean Length of true or false 15

char 1 1

double 21 21

enumerated Length of type 15

hexadecimal 10 10

integer 10 10

integer16 10 10

integer32 10 10

longreal 21 21

octal 10 10

real 21 13

shortreal 13 13

single 13 13

string constant Number of characters in the string Number of characters in the string

variable-length string Current length of the string Current length of the string

237

Pascal Validation Summary Report D

The Pascal Version 4.2 compiler has been validated using Version 5.5 of the
Pascal Validation Suite. It complies with FIPS PUB 109 ANSI/IEEE 770 X3.97-
1983 and BS6192/ISO7185 at both level 0 and level 1. This appendix is a
summary of the validation.

Test Conditions
The Pascal Version 4.2 compiler was validated under the Solaris 2.5 operating
system on a SPARCstation™ 10 machine.

The following compiler options were used during each validation:

• Level 1 mode
• All checks
• Runtime trace
• All other default options

The following manufacturer’s statement of compliance is included in the
Validation Summary Report for the architecture.

Manufacturer’s Statement of Compliance
The above processor complies with the requirements of both level 0 and level 1
(by means of a compiler switch) of BS 6192/ISO 7185, with no exceptions.

238 Pascal Language Reference

D

Implementation-Defined Features

The implementation-defined features are as follows:

E.1 The value of each char-type corresponding to each allowed string-
character is the corresponding ISO 8859/1 (ASCII) character.

E.2 The subset of real numbers denoted by signed-real are the values
representable in the single precision (32-bit) format of the IEC559:1982
Standard Binary Floating Point Arithmetic for Microprocessor Systems, which
is the same format as in the IEEE standard P754.

E.3 The values of char-type are the ISO 8859/1 (ASCII) character set.

E.4 The ordinal numbers of each value of char-type are the corresponding
ISO 8859/1 (ASCII) code value.

E.5 All file operations are performed at the point where they are encountered
at execution time, with the exception of get (both explicit and where
implied by reset and read), which is delayed in its execution to the
point at which the file is next referenced—a technique known as “lazy
I/O.”

E.6 The value of maxint is 2,147,483,647.

E.7 The accuracy of the approximations of the real operations and
functions is determined by the representation (see E.2) and by the
rounding of intermediate results. This gives approximately 16-decimal
digits of precision.

E.8 The default value of TotalWidth for integer-type is 10.

E.9 The default value of TotalWidth for real -type is 21.

E.10 The default value of TotalWidth for boolean -type is 5.

E.11 The value of ExpDigits is 2.

E.12 The exponent character is e.

E.13 The case in the output of the value of boolean -type is uppercase for the
initial letter, and lowercase for the remaining letters.

Pascal Validation Summary Report 239

D

E.14 The procedure Page causes the contents of the output buffer (if any) to
be written, and then outputs the ISO 8859/1 (ASCII) form-feed character.
The effect on any device depends on that device.

E.15 There is no binding between physical files and program parameters of
file-type. Variables of file-type are associated with physical files or
devices automatically by the processor.

E.16 The effects of reset and rewrite on the standard files input and
output depend on the binding of these files specified at the invocation
of the program. In general, reset and rewrite have the effects
described in clause 6.6.5.2 of the Pascal Standard1 when input and output
have been bound to permanent files. When the binding is to a device,
reset(input) has no effect other than discarding any partially
processed line. rewrite(output) terminates any partially complete
line but has no other effect. rewrite(input) and reset(output) are
treated as errors.

E.17 This implementation supports the alternative representation of symbols
permitted by the Standard.

Reporting of Errors

The following errors are detected prior to, or during, execution of a program:

D.1, D.3, D.7, D.9, D.10, D.11, D.14, D.15, D.16, D.17, D.18, D.23, D.26, D.29,
D.33, D.34, D.35, D.36, D.37, D.40, D.41, D.42, D.45, D.46, D.47, D.49, D.51,
D.52, D.53, D.54, D.55, D.56, D.57, D.58, D.59

The following errors are not, in general, reported:

D.2, D.4, D.5, D.6, D.8, D.12, D.13, D.19, D.20, D.21, D.22, D.24, D.25, D.27,
D.28, D.30, D.31, D.32, D.38, D.39, D.43, D.44, D.48, D.50

1. The American National Standard Pascal Computer Programming Language, ANSI/IEE 770 X3.97-1983,
published by the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York,
NY 10017, c. 1983.

240 Pascal Language Reference

D

Implementation-Dependent Features

Implementation-dependent features F.1 to F.11 of Pascal are treated as
undetected errors.

Extensions

The processor does not contain any extensions to BS6192/ISO 7185. Such
extensions must be enabled by means of a compiling option, not the subject of
validation.

241

Glossary

This glossary defines some general programming terms, as well as terms that
are specific to Pascal.

|
The bitwise or operator.

~
The bitwise not operator.

!
The bitwise or operator.

#
A programming symbol that specifies an integer value in a base other than 10,
includes a file in your program, or indicates a preprocessor command.

%
A programming symbol used with the –xl option for special cppas directives.

&
The bitwise and operator.

adb
An interactive, general-purpose, assembly-level debugger.

addr
A built-in function that returns the address of a specified variable.

242 Pascal Language Reference

alfa
An array of char 10 characters long.

and then
An operator similar to the standard and operator. The difference is that
and then enforces left-to-right evaluation and evaluates the right operand
only if the left operand is true .

append
A built-in procedure that opens a file for writing at its end.

argc
A built-in function that returns the number of arguments passed to the
program.

argv
A built-in procedure that assigns the specified program argument to a string
variable.

arshft
A built-in function that does an arithmetic right shift of an integer value.

asl
A built-in function that does an arithmetic left shift of an integer value.

asr
A built-in function that does an arithmetic right shift of an integer value. Same
as arshft .

assert
A statement which causes a boolean expression to be evaluated and aborts
the program if false , provided that the –C option is specified.

bell
A predeclared character constant equal to char(7) , which makes the terminal
beep.

block buffering
Output buffering with a block size of 1,024.

card
A built-in function that returns the number of elements of a set variable.

clock
A built-in function that returns the user time consumed by the process.

Glossary 243

close
A built-in procedure that closes a file.

compiler directive
A percent sign (%) followed by a name indicating an action for the cppas
preprocessor to take. Programs that contain compiler directives must be
compiled with the –xl option.

concat
A built-in function that concatenates two strings.

conditional variable
A variable, either defined or undefined, handled by the cppas preprocessor. A
conditional variable is defined when it appears in a %var directive. Programs
that contain conditional variables must be compiled with the –xl option.

%config
A compiler directive that is a special predefined conditional variable with a
value of either true or false . Programs that contain the %config directive
must be compiled with the –xl option.

cppas
The preprocessor that handles the Pascal conditional variables and compiler
directives when the -xl option is specified.

date
A built-in procedure that fetches the current date (as assigned when the
operating system was initialized) and assigns it to a string variable.

dbx
A symbolic debugger that understands Pascal, Modula-2, C, and FORTRAN
programs.

%debug
A compiler directive that works with the -cond compiler option.
-cond instructs pc , the Pascal compiler, to compile the lines in your program
that begin with %debug. Programs that contain the %debug directive must be
compiled with the –xl option.

define attribute
An attribute used to declare a variable that is allocated in the current module
and whose scope is public .

244 Pascal Language Reference

define declaration
A declaration used to declare a variable that is allocated in the current module
and whose scope is public .

discard
A built-in procedure that throws away the value a function returns.

double
A real data type that represents a 64-bit floating-point number. Same as
longreal .

%else
A compiler directive that provides an alternative action to the %if directive. If
the expression in %if is false , the compiler skips over the %then part and
executes the %else part instead. Programs that contain the %else directive
must be compiled with the –xl option.

%elseif
A compiler directive that provides another alternative action to the %if
directive. If the expression in %if is false , the compiler skips over the %then
part and executes the %elseif part instead. Programs that contain the
%elseif directive must be compiled with the –xl option.

%elseifdef
A compiler directive that provides an alternative action to the %ifdef
directive. If the expression in %ifdef is false , the compiler skips over the
%then part and executes the %elseifdef part instead. Programs that contain
the %elseifdef directive must be compiled with the –xl option.

%enable
A compiler directive that sets a conditional variable to true . Programs that
contain the %enable directive must be compiled with the –xl option.

%endif
A compiler directive that indicates the end of the %if or %ifdef directive.
Programs that contain the %endif directive must be compiled with the –xl
option.

%error
A compiler directive that prints a string on the standard output and treats it as
an error. Programs that contain the %error directive must be compiled with
the –xl option.

Glossary 245

errout
A special predefined file variable equivalent to the operating system standard
error file, stderr .

exit
A statement used in a for , while , or repeat loop to transfer program control
to the first statement after the loop.

%exit
A compiler directive that causes the compiler to stop processing the current
Pascal source file. Programs that contain the %exit directive must be
compiled with the –xl option.

expo
A built-in function that calculates the integer-valued exponent of a specified
number.

extern attribute
An attribute used to declare a variable that is not allocated in the current
program or module unit, but is a reference to a variable allocated in another
unit.

extern option
A procedure and function option that indicates the procedure or function is
defined in a separate program or module unit, and possibly in a different
source language. Same as external .

external
A procedure and function option that indicates the procedure or function is
defined in a separate program or module unit, and possibly in a different
source language. Same as extern .

filesize
A built-in function that returns the current size of a file.

firstof
A built-in function that returns the first possible value of a type or variable.

flush
A built-in procedure that writes the output buffered for the specified Pascal file
into the associated operating system file.

246 Pascal Language Reference

getenv
A built-in function that returns the value associated with an environment
name.

getfile
A built-in function that returns a pointer to the C standard I/O descriptor
associated with a Pascal file.

halt
A built-in procedure that terminates program execution.

%if
A compiler directive. When the compiler encounters a %if expression %then
directive, it evaluates expression. If expression is true , the compiler executes
the statements after %then . If expression is false , the compiler skips over
%then . Programs that contain the %if directive must be compiled with the –
xl option.

%ifdef
A compiler directive that determines whether or not a conditional variable in a
%var directive has been previously defined. Programs that contain the
%ifdef directive must be compiled with the –xl option.

I/O handler
A Pascal function that is passed the values err_code and filep when an I/O
error occurs. The handler returns false to terminate the program, or true to
continue program execution.

in
A parameter type indicating the parameter can only pass a value into a
procedure or function.

in out
A parameter type indicating the parameter can both take in values and pass
them back out.

in_range
A built-in function that checks if a value is in a defined subrange.

%include
A compiler directive that instructs cppas to insert the lines from the specified
file in the input stream. Programs that contain the %include directive must
be compiled with the –xl option.

Glossary 247

include file
A file that is inserted into a source file with the %include or #include
directive.

index
A built-in function that returns the position of the first occurrence of a string or
character in another string.

input
A special predefined file variable equivalent to the standard input file, stdin .

integer16
An integer data type that represents a 16-bit value.

integer32
An integer data type that represents a 32-bit value.

internal
A procedure and function option that makes the procedure or function local to
a module.

intset
A predefined set of [0..127] .

land
A built-in function that returns the bitwise and of two integers.

lastof
A built-in function that returns the last possible value of a type or variable.

length
A built-in function that returns the length of a string.

line buffering
The buffering of output line-by-line.

linelimit
A built-in procedure that terminates execution of a program after a specified
number of lines have been written into a text file.

%list
A compiler directive that enables a listing of the program. Programs that
contain the %list directive must be compiled with the –xl option.

248 Pascal Language Reference

lnot
A built-in function that returns the bitwise not of an integer value.

longreal
A real data type that represents a 64-bit floating-point number. Same as
double .

lor
A built-in function that returns the inclusive or of two integer values.

lshft
A built-in function that does a logical left shift of an integer value.

lsl
A built-in function that does a logical left shift of an integer value. Same as
lshft .

lsr
A built-in function that does a logical right shift of an integer value. Same as
rshft .

max
A built-in function that evaluates two scalar expression and returns the larger
one.

maxchar
A predeclared character constant equal to char(255) .

maxint
An integer constant that represents the 16-bit value 32,767 when you compile
your program with the –xl option; otherwise, maxint represents the 32-bit
value 2,147,483,647.

message
A built-in procedure that writes the specified information on stderr , usually
the terminal.

min
A built-in function that evaluates two scalar expressions and returns the
smaller one.

minchar
A predeclared character constant equal to char(0) .

Glossary 249

minint
An integer constant that represents the 16-bit value -32,768 when you compile
your program with the –xl option; otherwise, minint represents the 32-bit
value, -2,147,483,648.

module heading
A heading that contains the reserved word module followed by an identifier.
For example, module sum; is a legal module heading.

module unit
A source program that does not have a program header.

next
A statement used in a for , while , or repeat loop to skip to the next iteration
of the current loop.

%nolist
A compiler directive that disables the program listing. Programs that contain
the %nolist directive must be compiled with the –xl option.

nonpascal
A procedure and function option that declares non-Pascal routines when you
are porting Apollo DOMAIN programs written in DOMAIN Pascal,
FORTRAN, C, and C++.

null
A built-in procedure that performs no operation.

open
A built-in procedure that associates an external file with a file variable.

or else
An operator similar to the standard or operator. The difference is that
or else enforces left-to-right evaluation and evaluates the right operand only
if the left operand is false .

otherwise
A Pascal extension to the standard Pascal case statement. If the value of the
case selector is not in the case label list, Pascal executes the statements in the
otherwise clause.

out
A parameter indicating that the parameter is used to pass values out of the
routine.

250 Pascal Language Reference

output
A special predefined file variable equivalent to the standard output file,
stdout .

private
A variable, procedure, or function declaration that restricts its accessibility to
the current compilation unit.

procedure and
function pointer

A pointer that has the address of a procedure or function as its value.

public
A variable, procedure, or function declaration that is visible across multiple
programs and modules.

random
A built-in function that generates a random number between 0.0 and 1.0.

remove
A built-in procedure that removes the specified file.

return
A statement used in a procedure or function to prematurely end the procedure
or function.

rshft
A built-in function that does a logical right shift of an integer value.

seed
A built-in function that reseeds the random number generator.

seek
A built-in procedure that resets the current position of a file.

shortreal
A real data type that represents a 32-bit floating point number. Same as
single .

single
A real data type that represents a 32-bit floating point number. Same as
shortreal .

Glossary 251

sizeof
A built-in function that returns the number of bytes the program uses to store
a data object.

%slibrary
A compiler directive that directs cppas to insert the lines from the specified
file in the input stream. Same as %include . Programs that contain the
%slibrary directive must be compiled with the –xl option.

stradd
A built-in procedure that adds a string to the end of another string.

static
A variable attribute that declares the variable private in scope.

stderr
The standard operating system error file.

stdin
The standard operating system input file.

stdout
The standard operating system output file.

stlimit
A built-in procedure that terminates program execution if a specified number
of statements have been executed in the current loop.

string
An array of char 80 characters long.

substr
A built-in function that extracts a substring from a string.

sysclock
A built-in function that returns the system time consumed by the process.

tab
A predeclared character constant equal to char(9) , which makes a tab
character.

tell
A built-in function that returns the current position of a file.

252 Pascal Language Reference

time
A built-in procedure that retrieves the current time.

trace
A built-in procedure that prints stack traceback.

trim
A built-in function that removes trailing blanks in a character string.

type transfer function
A built-in function that changes the data type of a variable, constant, or
expression.

unit
Either a program or a module.

univ
A modifier used before data types in formal parameter lists to turn off type
checking for that parameter.

univ_ptr
See universal pointer.

universal pointer
A pointer used to compare a pointer of one type to another or to assign a
pointer of one type to another.

%var
A compiler directive that defines conditional variables for the preprocessor.
Programs that contain the %var directive must be compiled with the –xl
option.

variable attribute
An attribute that determines how to allocate the variable. Variable attributes
include static , extern , and define .

variable initialization
The initialization of a real , integer, boolean , character, set, record, array, or
pointer variable in the var declaration of the program.

variable routine option
A routine option that is used to pass a routine a smaller number of actual
arguments than the number of formal arguments defined in the routine.

Glossary 253

variable scope
Either private or public . Visibility of a private variable is restricted to
the current compilation unit. A public variable can be referenced across
multiple programs and modules.

variable-length string
A string of variable length. A variable-length string can be assigned a string of
any length, up to the maximum length specified in the declaration. Pascal
ignores any characters specified over the maximum.

varying
A string of variable length.

wallclock
A built-in function that returns the elapsed number of seconds since
00.00.00 GMT January 1, 1970.

%warning
A compiler directive that tells the compiler to print a string on the standard
output as a warning. Programs that contain the %warning directive must be
compiled with the –xl option.

–xl option
An option of the pc command that causes the compiler to implement Pascal as
DOMAIN Pascal.

xor
A built-in function that returns the exclusive or of two integers.

254 Pascal Language Reference

255

Index

A
addr function, 99, 222
alfa data type, 34
alignment of data types, 233
and operator, 2, 221
and then operator, 69 to 70
AnswerBook, xxiii
Apollo DOMAIN Pascal, 227 to 229
append function, 102, 222
argc

function, 99, 105, 222
procedure, 105

argv procedure, 99, 105, 222
arithmetic

left shift, 109
operators, 66
right shift, 108
routines, 95

array data types, 34 to 37
alfa , 34
as function return value, 89
conformant, 89
data representation, 37
declaring variables, 34
initializing variables, 36
string , 34
univ parameter type, 89

varying , 34
arrays, 73
arshft function, 97, 107, 171, 222
ASCII character set, 1
asl function, 97, 109, 222
asr function, 97, 111, 171, 223
assert statement, 48, 221
assignment statement, 13, 18, 20, 22
assignments, 63 to 65

compatibility rules, 64
data types, 63
extensions, 221
null strings, 65
string constants, 65
strings, to and from, 64

B
–b option to pc command, 214
bell character, 23, 220
bit operators, 66
bitwise operators, 151

and , 2, 221
not , 201, 221
or , 2, 201, 221

block buffering, 214
boolean

expression, 48

256 Pascal Language Reference

operators, 66
and then , 69 to 70
or else , 71

boolean data types, 20 to 21
assignment compatibility rules, 63
declaring constants, 21
declaring variables, 20
initializing variables, 20

buffering
block, 214
file output, 213
line, 214

built-in procedures and functions, 2
nonstandard, 95 to 201, 203, 222
standard, 95, 203

C
–C option to pc command, 48, 218
C programming language, 94, 204
card function, 96, 112, 223
case statement, 48, 51 to 52, 157, 221

otherwise clause, 51, 58
range of constants, 52
with –xl option, 51

character
data type, 23

assignment compatibility
rules, 63

bell , 23, 220
data representation, 23
declaring constants, 23
declaring variables, 22
maxchar , 23, 220
minchar , 23, 220
tab , 23, 220

set, 1
string routines, 97

clock function, 99, 113, 223
close procedure, 98, 116, 204, 223
comments, 6, 48, 214, 219
concat function, 117, 223
conformant array, 89
const declaration, 77, 79, 222

conventions, typographical, xxii

D
data structure, 213
data types

alignment, 233
array, 34 to 37
assignments, 63
boolean , 20 to 22
enumerated, 24
extensions, 220
file, 41
integer, 232
internal representation

with –xl , 235
without –xl , 234

pointer, 41 to 45, 80
real, 231
real , 13 to 15
record, 27 to 33
set, 38 to 39
size restrictions, 232
space allocation, 232
subrange, 25

date procedure, 99, 118, 223
declarations, 77 to 84

const , 79, 222
define , 222
extensions, 221
label , 222
type , 222
var , 14, 18, 27, 80 to 83

default field widths, 236
define

declaration, 83, 222
variable, 80, 222

discard procedure, 99, 120, 223
documentation, xxiii to xxiv
DOMAIN Pascal, 227 to 229

features accepted but ignored, 227,
228

features not supported, 229
–xl option, 227

Index 257

double data type, 13, 220, 232

E
enumerated data, 23, 24

assignment compatibility rules, 63
data representation, 24
with read and readln

procedures, 23
with write and writeln

procedures, 23
eof function, 135, 204 to 207
eoln function, 135, 204 to 209
error

file, stderr , 212
recovery of input and output, 214

errout file variable, 211
exit statement, 52 to 53, 221
expo function, 96, 123, 223
extensions, 219 to 225

assignments and operators, 221
built-in routines, 222
data types, 220
heading and declarations, 221
input and output, 225
lexical elements, 219
procedures and functions, 222
program compilation, 225
statements, 221

extern
option, 92, 222
variable, 82, 84, 222

external option, See extern option

F
field widths, default, 236
file

permanent, 210
stderr , 211
stdin , 212
stdout , 211
temporary, 211

file data type, 41

with –s option, 41
with –V0 and –V1 options, 41

file identifiers
input , 117
output , 117

file variable, 210
errout , 211
input , 211
output , 211

files
external and Pascal file variables, 210
how to close, 117
permanent and temporary, 210

filesize function, 124, 223
firstof function, 96, 126, 223
flush procedure, 98, 130, 204, 213, 223
for statement, 52, 56, 221
formal parameter, 88, 92
FORTRAN programming language, 94
forward option, 91
function

addr , 99
append , 102
argc , 99, 105
arshft , 97, 107, 171
asl , 97, 109
asr , 97, 111, 171
association with define

declaration, 84
built-in, 95
card , 96, 112
clock , 99, 113
concat , 117
declarations, 77
eof , 135, 204 to 207
eoln , 135, 204 to 209
expo , 96, 123
extensions, 222
extern option, 92
external option, 92
filesize , 124, 223
firstof , 96, 126
forward option, 92
getenv , 99, 132

258 Pascal Language Reference

getfile , 98, 134, 204, 215
in_range , 138
index , 97, 139
internal option, 92
land , 97, 142
lastof , 144
length , 97, 145
lnot , 97, 149
lor , 97, 150
lshft , 97, 152
lsl , 97, 153
lsr , 97, 153
max, 96, 153
min , 96, 156
nonpascal option, 94
parameters, 85 to 88
private , 84, 92, 222
public , 84, 222
random , 96, 162
return statement, 59 to 60
return value, 89, 121
returning structured types, 222
rshft , 97, 171
seed , 96, 172
sizeof , 96, 176
substr , 97, 183
sysclock , 99, 114, 184
tell , 224
time , 185
trim , 97, 191, 225
type transfer, 99, 193
var declaration, 14, 18, 21, 23, 28
variable option, 92
wallclock , 99, 195
xor , 97, 200

G
getenv function, 99, 132, 223
getfile function, 98, 134, 204, 215, 223
global variable, 81
goto statement, 48, 54, 59, 221

exiting current block, 54
use of identifier in, 54

H
halt procedure, 99, 136, 223
headings

extensions, 221
function, 84
program, 210

I
identifiers, 2, 4, 54, 59

as labels , 77
in define declaration, 83
nonstandard predeclared, 4, 220
restrictions to, 231
standard predeclared, 4, 220

if statement, 48, 208, 221
implementation restrictions, 231 to 236
in out parameter, 85, 88
in parameter, 85, 88, 215
in_range function, 138, 223
include directive and statement, 216
index function, 97, 139, 223
initializing variables, 83
input

environment, 203 to 218
error recovery, 214
extensions, 225
file

stdin , 212
variable, 211

input and output
library, 212
routines, nonstandard and

standard, 204
trap handler, 215

integer data types, 16 to 20
assignment compatibility rules, 63
data representation, 19
declaring constants, 18
integer , 17
integer16 , 17, 220
integer32 , 220
maxint , 232
minint , 19, 232

Index 259

specifying in another base, 19
unsigned integer, 17

integer16 , 20, 220
integer32 , 17, 20, 220
interactive programming, 203
internal option, 92, 222
ioerr.h file, 215

K
keywords, 2

L
–L option to pc command, 2, 228
label declaration, 77, 222
land function, 97, 142, 223
lastof function, 144, 223
length function, 97, 145, 223
lexical

characters, 1
elements, 1

line buffering, 214
linelimit procedure, 98, 147, 204, 223
lnot function, 97, 149, 223
local variable, 80, 81, 100
longreal , 220
lor function, 97, 150, 224
lowercase characters, mapping, 2
lshft function, 97, 151, 224
lsl function, 97, 153
lsr function, 97, 153, 224

M
manuals, See documentation
mapping to lowercase characters, 2
max function, 153, 224
maxchar , 23, 220
message procedure, 98, 155, 204, 213, 224
min function, 96, 156, 224
minchar , 23, 220

mod operators, 66
modules

extern or external option, 92, 222
extern variables, 82, 84
public and private routines, 84
scope of variables, 80

N
nested routines, 235
next statement, 56
nil , 79
nonpascal option, 94, 222
nonstandard special symbols

! , 2, 219
#, 2, 219
%, 2, 219
&, 2, 219
| , 2, 219
~, 2, 219

not operator, 2, 201, 221
null procedure, 99, 157, 224
null string assignments, 65

O
open procedure, 98, 117, 158, 204, 210, 224
operators, 66 to 76, 79

and , 2, 221
and then , 69 to 70
arithmetic, 66
bit, 66, 68
boolean , 66, 68
extensions, 221
mod, 66
not , 2, 201, 221
or , 2, 201, 221
or else , 70
precedence of, 76
relational, 66, 72
set, 66, 71
string, 66, 75

options for routines, 91 to 94
extern or external , 92, 222
internal , 92

260 Pascal Language Reference

nonpascal , 94, 227
variable , 92

or else operator, 70
or operator, 2, 201, 221
otherwise clause in case statement, 51,

58
out parameter, 85, 88
output

environment, 203 to 218
error recovery, 214
extensions, 225
file

buffering, 213
stdout , 212
variable, 211

P
packed records, 30
parameters, 84 to 89

formal, 86, 88, 92
in , 85, 88, 215
in out , 85, 88
out , 85, 88
passing conventions, 86
type checking, 88
univ type, 88
value, 86
var , 86, 88

Pascal
extensions in the compiler, xix
symbols, 2
validation summary, 237 to 240

pc command
–b option, 214
–C option, 48, 218
document reference, 2
–L option, 2, 228
–s option, 2, 3
–V0 option, 3
–V1 option, 3
–xl option, 9, 17, 24, 94, 227, 234

pcexit procedure, 99
pointer data type, 41 to 45

assignment compatibility rules, 63
data representation, 45
declaring variables, 42
initializing variables, 45
procedure and function, 43, 80
univ_ptr , 42
universal, 80

precedence of operators, 76
private

function, 84
procedure, 84
variable, 81, 222

procedure
append , 222
argc , 105
argv , 99, 105
association with define

declaration, 84
built-in, 95
close , 98, 116, 204
date , 99, 118
declarations, 77
discard , 99, 120
extensions, 222
extern option, 92
external option, 92
flush , 98, 130, 204, 213
forward option, 92
halt , 99, 136
internal option, 92
linelimit , 98, 147, 204
message , 98, 155, 204, 213
nonpascal option, 94
null , 99, 157
open , 98, 117, 158, 204, 210
parameters, 85 to 89
pcexit , 99
private , 92, 222
public , 222
read , 23, 98, 163, 204, 205, 207, 209,

211
readln , 23, 98, 135, 163, 204, 207, 209,

211
remove , 98, 166, 204
reset , 98, 117, 135, 167, 204, 212

Index 261

return statement, 59
rewrite , 98, 135, 168, 204, 211
seek , 174, 224
stlimit , 99, 180
stradd , 182, 224
time , 99, 187
trace , 225
var declaration, 14, 21, 23, 28, 36, 39,

83
variable option, 92
write , 24, 98, 155, 198, 204, 211, 212
writeln , 24, 98, 155, 198, 204, 211,

212
program

compilation extensions, 225
headings, 210
unit, 84

public
function, 84
procedure, 84
variable, 81, 84, 222

R
random function, 162, 224
read procedure, 23, 98, 163, 204, 205, 207,

209, 211, 224
readln procedure, 23, 98, 135, 163, 207,

209, 211, 224
real data types, 13 to 15

as function return value, 89
data representation, 15
declaring

constants, 14
variables, 13

double , 13, 220, 232
longreal , 13, 220
real , 13, 15
shortreal , 13, 15, 220
single , 13, 15, 220, 232
with –xl option, 13, 17

record data type, 26 to 33
as function return value, 89
assignment compatibility rules, 63
declaring variables, 26

initializing
data, 27
variables, 83

representation of unpacked
records, 30

records, 73
relational operators, 66, 72
remove procedure, 98, 166, 204, 224
repeat statement, 52, 56, 221
reserved words, 3

nonstandard extensions, 4
standard, 3

reset procedure, 98, 117, 135, 167, 204,
212, 224

return statement, 59, 221
rewrite procedure, 98, 117, 135, 168, 204,

211, 225
routine

addr , 96, 99, 222
append , 98, 102
argc , 99, 105, 222
argv , 99, 105, 222
arithmetic, 95
arshft , 97, 108, 171, 222
asl , 97, 110, 222
asr , 97, 171, 223
built-in, 95 to 201
card , 96, 112, 223
clock , 99, 114, 223
close , 98, 116, 204, 223
concat , 97, 223
date , 99, 118, 223
discard , 121, 223
eof , 135, 204 to 207
eoln , 135, 204 to 209
expo , 96, 123, 223
extern option, 92
external option, 92
filesize , 98
firstof , 96, 126, 223
flush , 98, 130, 204, 213, 223
forward option, 91
getenv , 99, 223
getfile , 98, 135, 204, 215, 223

262 Pascal Language Reference

halt , 99, 136, 223
in_range , 96, 138, 223
index , 97, 139, 140, 223
input and output, 203
internal option, 92
land , 97, 142, 223
lastof , 96, 144, 223
length , 97, 146, 223
linelimit , 98, 147, 204, 223
lnot , 97, 149, 223
lor , 97, 150, 224
lshft , 97, 152, 224
lsl , 97, 153
lsr , 97, 153, 224
max, 96, 224
message , 98, 155, 204, 213, 224
min , 96, 157, 224
nonpascal option, 94
null , 99, 157, 224
open , 98, 117, 158, 204, 210, 224
parameters, 85 to 89
private , 84, 92
public , 84
random , 96, 162, 224
read , 98, 163, 204, 205, 207, 209, 211,

224
readln , 98, 135, 163, 204, 207, 209,

211, 224
remove , 98, 166, 204, 224
reset , 98, 117, 135, 167, 204, 212, 224
return statement, 59
rewrite , 98, 117, 135, 169, 204, 211,

225
rshft , 97, 171, 224
seed , 96, 172, 224
seek , 98
sizeof , 96, 176, 224
stlimit , 99, 180, 224
stradd , 97
substr , 97, 183, 224
sysclock , 99, 114, 184, 224
tell , 98, 185, 224
time , 99, 187, 224
trace , 99, 189, 225
trim , 97, 191, 225
type transfer, 99, 193, 225

var declaration, 36, 39
variable option, 92
wallclock , 99, 195, 225
write , 98, 155, 198, 204, 211, 212, 225
writeln , 98, 155, 198, 204, 211, 212,

225
xor , 97, 200, 225

routine parameters, 85 to 89
routines, 79
rshft function, 97, 171, 224

S
–s option to pc command, 2, 3
scope of variables

private , 80
public , 80

seed function, 162, 172, 224
seek procedure, 174, 224
set

data types, 38 to 39
as function return value, 91
assignment compatibility

rules, 63
data representation, 39
declaring variables, 38
returning number of

elements, 112
initializing variables, 83
operators, 66, 71

shortreal , 13, 15, 220
signal handler, 214
single , 13, 15, 220, 232
sizeof function, 176, 224
space allocation of data types, 233
special symbols, nonstandard and

standard, 2
standard files

error, 212
input, 212
output, 212

statements, 47 to 62
assert , 48, 221
case , 47, 51 to 52, 157, 221

Index 263

exit , 52 to 53, 221
extensions, 221
for , 52, 56, 221
goto , 48, 54, 59, 221
if , 48, 208, 221
next , 56
repeat , 52, 56, 221
return , 59, 221
while , 52, 56, 206, 209, 221
with , 47, 60, 221

static variable, 14, 18, 21, 23, 28, 37, 39,
83, 222

stderr , 204, 211
stdin , 212
stdout , 211
stlimit procedure, 99, 180, 224
stradd procedure, 182, 224
string

assignments, 64
constants, assignments, 65
data type, 34
operators, 66, 75

subrange data, 17, 25 to 26
assignment compatibility rules, 63
data representation, 25
declaring variables, 25
with –xl option, 26

substr function, 97, 183, 224
symbols, 2
sysclock function, 99, 114, 184, 224

T
tab character, 23, 220
tell function, 185, 224
time procedure, 99, 187, 224
trace procedure, 225
trace routine, 189
trim function, 97, 191, 225
type checking of parameters, 88
type declaration, 222
type transfer function, 193, 225
typographical conventions, xxii

U
univ parameter, 85
univ parameter type, 88
univ_ptr , 42, 100, 135
unpacked records

fixed, 30
variant, 30

unsigned integer, 17

V
–V0 option to pc command, 3
–V1 option to pc command, 3
value parameter, 86, 88
value parameter, 85
var

declaration, 14, 18, 20, 22, 27, 36, 80 to
83, 222

attributes, 80
initialization, 83
scope, 80

parameter, 86, 88
var parameter, 85
variable

attributes, 80
define , 81, 83, 222
extern , 81, 82, 84, 222
global, 80
initialization, 83
local, 80, 83, 100
option, 92, 222
private , 80, 222
public , 80, 81, 83, 222
scope, 80
static , 81, 222

varying data type, 34

W
wallclock function, 99, 195, 225
while statement, 52, 56, 206, 209, 221
with

alternate form, 60 to 62
statement, 48, 221

264 Pascal Language Reference

write procedure, 23, 98, 155, 198, 204,
211, 212, 225

writeln procedure, 23, 98, 155, 198, 204,
211, 212, 225

X
–xl option to pc command, 9, 17, 24, 227

with define attribute, 83
with nonpascal routine option, 94

xor function, 97, 200, 225

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunSoft, Solaris, le Sun Microsystems Computer Corporation logo, le SunSoft logo,
ProWorks, ProWorks/TeamWare, ProCompiler, Sun-4, SunOS, ONC, ONC+, NFS, OpenWindows, DeskSet, ToolTalk, SunView,
XView, X11/NeWS, et AnswerBook sont des marques déposées ou enregistrées de Sun Microsystems, Inc. aux Etats-Unis et dans
d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc. PostScript et Display PostScript sont des marques déposées de Adobe Systems, Inc.
PowerPC™ est une marque déposée de International Business Machines Corporation. HP ® and HP-UX ® sont des marques
enregistrées de Hewlett-Packard Company.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

